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Abstract

Alternating projection methods have been extensively used to find the closest point, to a given point,
in the intersection of several given sets that belong to a Hilbert space. One of the characteristics of
these schemes is the slow convergence that can be observed in practical applications. To overcome this
difficulty, several techniques, based on different ideas, have been developed to accelerate their convergence.
Recently, a successful acceleration scheme was developed specially for Cimmino’s method when applied
to the solution of large-scale saddle point problems. This specialized acceleration scheme is based on
the use of the well-known conjugate gradient method for minimizing a related convex quadratic map. In
this work, we extend and further analyze this optimization approach for several alternating projection
methods on different scenarios. In particular we include a specialized analysis and treatment for the
acceleration of von Neumann-Halperin’s method and Cimmino’s method on subspaces, and Kaczmarz
method on linear varieties. For some specific applications we illustrate the advantages of our acceleration
schemes with encouraging numerical experiments.

Key words: Alternating projection methods, Cimmino’s method, von Neumann-Halperin’s method,
conjugate gradient method.

1 Introduction

An important problem that appears quite frequently in many different applications is the following: Find
the closest point, to a given point, in the intersection of several given sets that belong to a Hilbert space
H, see, e.g., [13, 14, 27, 39, 42] and the references therein. Depending on the characteristics of the given
sets different algorithms need to be used to solve this best approximation problem. We will consider the
general family of Alternating Projection Methods (MAP) that consists, roughly speaking, in projecting onto
each of the given sets individually to combine them in a suitable way to complete a cycle which is then
repeated iteratively. One of the common characteristics of these alternating projection schemes is the slow
convergence that can be observed in practice when the angles between the involved sets are small.

In this work, we will extend an optimization approach recently developed by Hernández-Ramos [29] to
accelerate Cimmino’s method [15] when applied to the solution of large-scale saddle point problems. For
this special scenario, the well-known Conjugate Gradient (CG) method for minimizing a related convex
quadratic map was combined with MAP to produce a very effective acceleration scheme. For a combination
of Cimmino’s method with CG for solving large and sparse linear systems, see also [2]. Taking advantage
of the analysis developed by Kammerer and Nashed [33] for CG, when applied to singular linear operators,
the optimization approach initiated in [29] will be adapted and analyzed for several different scenarios to
produce specialized acceleration schemes.
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The paper is organized as follows. In Section 2 we consider the case in which the given sets are subspaces
of H. In that setting, we propose and analyze new acceleration schemes, for both Cimmino’s method
and von Neumann-Halperin’s method, based on the conjugate gradient method applied to some equivalent
optimization problems. In Section 3, we consider the case in which the given sets are linear varieties, and
we propose and analyze acceleration schemes once again based on some low-cost optimization techniques.
In this case, we concentrate on accelerating Cimmino’s method due to its convenient properties. In Section
4, we present some numerical results to compare our proposed acceleration schemes with some well-known
acceleration schemes that can be found in the literature, and also with the original alternating projection
methods with no acceleration involved. Finally, in Section 5 we present our conclusions.

2 Acceleration of MAP onto subspaces

Let H be a Hilbert space with inner product 〈. , .〉 and associated norm ‖ . ‖, and let M1, M2, . . .Mn be
closed (linear) subspaces of H with M = ∩n

i=1Mi. For any closed subspace N of H, let PN be the orthogonal
projection onto N . The von Neumann-Halpering alternating projection method and the Cimmino’s method
are both members of the MAP family for determining the best approximation PMx to x in M . We now
present, for the sake of completeness, two fundamental theorems that describe these well-known schemes and
their convergence properties. The first one was established by von Neumann [43] for n = 2, and it was later
extended by Halpering [26] for n ≥ 2. The von Neumann-Halpering method is closely related to Kaczmarz
alternating projection method [31] for solving linear systems of equations.

Theorem 2.1 Let M1,M2, . . .Mn be closed (linear) subspaces of a Hilbert space H with M = ∩n
i=1Mi.

Then,
lim

k→∞
‖(PMnPMn−1 . . . PM1)

kx− PMx‖ = 0.

The second fundamental theorem is originally due to Cimmino [15] for solving systems of linear equalities,
and was later extended by Kammerer and Nashed [32] for solving linear operator equations in Hilbert spaces.
For additional extensions on several different scenarios see [7, 10, 11].

Theorem 2.2 Let M1,M2, . . .Mn be closed (linear) subspaces of a Hilbert space H with M = ∩n
i=1Mi.

Then,

lim
k→∞

‖( 1
n

n∑

i=1

PMi)
kx− PMx‖ = 0.

Iterations of these methods can be viewed as fixed point schemes xk = Txk−1 for a bounded linear non-
expansive operator T (i.e., ‖T‖ ≤ 1, where ‖ .‖ is the linear-operators induced norm). For the von Neumann-
Halpering method the operator is T = PMnPMn−1 . . . PM1 , and for the Cimmino’s method the operator is
T = 1

n

∑n
i=1 PMi . In both cases, these schemes converge to the set of fixed points Fix T = M = ∩n

i=1Mi,
i.e.,

lim
k→∞

‖T kx− PFix T x‖ = 0.

When the angle between the subspaces involved is “small”, both methods can present a slow rate of
convergence [16, 17, 18, 30, 34], that implies a high computational cost because it requires many iterations
of the alternating method to obtain a good approximation. Several acceleration schemes have been proposed
for both methods, e. g. [1, 12, 23, 25, 30, 40].

In [6], Bauschke et al. propose a generalization of the accelerated schemes in [25] and [23]. This general-
ization is developed for non-expansive operators T . In this generalization, for a general bounded linear fixed
point operator T such that

lim
k→∞

‖T kx− PFix T x‖ = 0,

the accelerated fixed point scheme, from x0 ∈ H, can be written as follows:

xk+1 = AT (xk),

where
AT (x) = txTx + (1− tx)x.
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and

tx =

{
〈x,x−Tx〉
‖x−Tx‖2 if Tx 6= x

1 if Tx = x.

With this choice of tx, AT (x) is the point on the line through the points x and Tx closest to PMx [6].
In this work, we show that this accelerated scheme is related to the steepest descent method for solving

singular linear equations in Hilbert spaces [38]. Taking into account that the steepest descent method is
known for its slowness in the presence of ill-conditioned problems, we propose a new acceleration scheme based
on the conjugate gradient method for solving singular linear equations in Hilbert spaces [33]. This conjugate
gradient acceleration can be applied for accelerating any fixed point scheme defined by a linear closed range
non expansive operator T , including the non expansive operators T related with the von Neumann-Halperin
method and the Cimmino’s method.

2.1 Acceleration of linear fixed point problems

Let T be a bounded linear operator in a Hilbert space H. The set of fixed points of T is:

Fix T = {x ∈ H : Tx = x}

The problem of finding the fixed points of T is equivalent to solving the linear system:

(I − T )x = 0.

In some cases, the operator (I−T ) is singular. For this case, an alternative is to solve the best approximation
problem:

min f(x) =
1
2
‖x− Tx‖2. (1)

If Fix T is non empty, clearly the set of global minimizers of f(x) is equal to Fix T . Therefore, the problem
of finding the fixed points of T can be viewed as a particular case of the least-squares problem (in Hilbert
spaces):

min f(x) =
1
2
‖b−Ax‖2, (2)

where operator A = I − T and b = 0.
Problem (2), has been treated previously by Nashed [38] for singular operators in Hilbert spaces using

the steepest descent method, and later by Kammerer and Nashed [33] using the conjugate gradient method.
In the following two theorems we summarize these fundamental results.

Theorem 2.3 (Nashed [38]) Let H be a Hilbert space, A : H → H be a bounded linear operator such
that its range is closed. The sequence {xk} generated by the steepest descent method applied to problem (2),
converges to an element u ∈ S = {z : inf ‖Ax−b‖ = ‖Az−b‖, x ∈ H} for any initial approximation x0 ∈ H.
Moreover, the sequence {xk} converges to A†b if and only if x0 ∈ R(A∗).

Theorem 2.4 (Kammered and Nashed [33]) Let X and Y be two Hilbert spaces over the real field and
let A be a bounded linear transformation mapping X to Y . If the range of A is closed, the conjugate gradient
method, applied to problem (2) with initial approximation x0 ∈ H, converges monotonically to the least
squares solution u = A†b+(I−P )x0 of Ax = b, where P denote the orthogonal projection of X onto R(A∗).

A condition for applying these results to solve problem (1) is that the range of operator I − T is closed.
For finite dimensional spaces, this condition is satisfied automatically. However, for infinite dimensional
spaces, the closed range condition for I − T must be verified.

The iterates defined by the accelerated scheme AT , from x0 ∈ H, proposed in [6] are:

AT (xk) = txk
Txk + (1− txk

)xk

= xk + txk
(Txk − xk)

= xk + tkdk,
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where dk = Txk − xk, and tx is given by

txk
=
〈−xk, dk〉
〈dk, dk〉 for xk /∈ Fix T.

Therefore, this accelerated scheme correspond to the steepest descent sequence for solving the problem
(I−T )x = 0, which is known for being a slow method. That explain the observation in [6] that the accelerated
scheme AT is not always faster that the original fixed point scheme when operator T is not a self-adjoint
operator. That is the case when T is the operator associated with the von Neumman-Halperin alternating
projection method [6]. Nevertheless, for symmetric versions, such as those associated with the self-adjoint
operator T ∗T , the convergence of the accelerated scheme is faster than their original versions [6]. Instead, for
accelerating these fixed point schemes, we are more interested in the conjugate gradient sequence analyzed
in [33] for singular linear systems in Hilbert spaces.

If the range R(I − T ) is closed, Theorem 2.4 implies that the conjugate gradient method applied to

min f(x) =
1
2
‖(I − T )x‖2, (3)

converges to the least-squares solution

u = (I − T )†0 + (I − P )x0 = (I − P )x0,

where P denotes the orthogonal projection of x onto R(I − T )∗. Moreover,

R(I − T )∗ = η(I − T )⊥ = (Fix T )⊥,

where η(I − T ) denotes the null of (I − T ).
Since PFix T = I − P(Fix T )⊥ , the conjugate gradient method will converge to the projection of x0 onto

Fix T . Summarizing we obtain the following theorem.

Theorem 2.5 Let T be a bounded non-expansive operator such as R(I − T ) is closed. Then, the conju-
gate gradient method for minimizing (1) with initial approximation x0 ∈ H converges monotonically to the
projection of x0 onto Fix T .

However, to apply this result, it is necessary to show that R(I − T ) is a closed subspace. Below, we will
characterize this closed range condition. For that, we will use the following result.

Theorem 2.6 (Kulkarni and Nair [35]) Let A : X → Y be a nonzero bounded linear operator between
two Hilbert spaces X and Y . The subspace R(A) is closed in Y if and only if there exists γ > 0 such that

σ(A∗A |η(A)⊥) ⊆ [
γ, ‖A‖2] ,

where σ(A) denotes the spectrum of the operator A.

In other words, for R(A) to be closed it suffices that the operator A verifies

0 < γ ≤ inf
x∈η(A)⊥

〈x,A∗Ax〉
〈x, x〉 = inf

x∈η(A)⊥

‖Ax‖2
‖x‖2 ,

and

sup
x∈η(A)⊥

〈x,A∗Ax〉
〈x, x〉 = sup

x∈η(A)⊥

‖Ax‖2
‖x‖2 ≤ ‖A‖2.

From properties of the norm, the sup condition is clearly verified. Since η(I − T )⊥ = (Fix T )⊥, to prove
that A = I − T has closed range, it suffices to prove that there exists γ > 0 such that the Rayleigh quotient
satisfies:

inf
x∈(Fix T )⊥

‖x− Tx‖2
‖x‖2 ≥ γ > 0.

The following definition is a generalization of the definition of the cosine of the angle between subspaces
M1,M2, . . . Mn, given by Bauschke, Borwein and Lewis [5], and denoted by cos(M1,M2, . . . Mn).
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Definition 2.1 Let T be a bounded non-expansive operator in a Hilbert space H. We define the cosine of
T as

cos(T ) = ‖TP(Fix T )⊥‖.
Since T is a non-expansive operator (‖T‖ ≤ 1) then,

0 ≤ cos(T ) = ‖TP(Fix T )⊥‖ ≤ ‖T‖ ‖P(Fix T )⊥‖ ≤ 1.

It is easy to show that cos(T ) = ‖T − PFix T ‖, i.e., the distance between operators T and the projection
onto Fix T . In fact,

cos(T ) = ‖TP(Fix T )⊥‖ = ‖T (I − PFix T )‖ = ‖T − TPFix T ‖.

Since PFix T is a fixed point of T , we have that TPFix T = PFix T , and we obtain

cos(T ) = ‖T − PFix T ‖.

When T is the operator associated with the alternating projection method (i.e. T = PMn
PMn−1 . . . PM1),

then cos(T ) = cos(M1,M2, . . . Mn), as defined in [5].

Lemma 2.1 If c = cos(T ) < 1 then R(I − T ) is closed.

Proof. Let x ∈ (Fix T )⊥. By the Cauchy-Schwarz inequality,

‖Tx‖ = ‖TP(Fix T )⊥x‖ ≤ ‖TP(Fix T )⊥‖‖x‖ = c‖x‖.

By the triangular inequality,
‖x− Tx‖ ≥ ‖x‖ − ‖Tx‖.

Hence, for all x ∈ (Fix T )⊥ we have,
‖x− Tx‖ ≥ (1− c)‖x‖

and

inf
x∈(Fix T )⊥

‖x− Tx‖2
‖x‖2 ≥ (1− c)2 = γ > 0. (4)

Consequently, if c = cos(T ) < 1, we can apply the conjugate gradient acceleration. We summarize these
results in the following theorem:

Theorem 2.7 Let T be a bounded non-expansive operator such that cos(T ) < 1. Then, the conjugate gradi-
ent method for minimizing (1) with initial approximation x0 ∈ H converges monotonically to the projection
of x0 onto Fix T .

Summing up, if cos(T ) < 1 and if we apply the conjugate gradient method for minimizing f(x) =
1
2‖x− Tx‖2, the iterations will converge to the fixed point of T closest to the initial approximation x0, i. e.,
the sequence of iterates will converge to the projection of the initial approximation x0, onto the fixed points
Fix T .

To present the conjugate gradient acceleration algorithm, we need the gradient operator of f(x) =
1
2‖x− Tx‖2,

∇f(x) = (I − T )∗(I − T )x, (5)

and its Hessian operator,
∇2f(x) = (I − T )∗(I − T ). (6)

Notice that the Hessian operator is constant and positive semi-definite, i.e., f is a convex quadratic map. In
fact, for any x ∈ H we have,

〈x,∇2fx〉 = ‖(I − T )x‖2 ≥ 0.

In Algorithm 1 we show the conjugate gradient acceleration that computes PFix T x0, i.e., the point in
Fix T closest to the initial approximation x0. The rate of convergence of this algorithm is related to the
spectral bounds of the restricted operator U = {(I−T )∗(I−T ) | R(I−T )∗}. Let µ(x) = 〈Ux, x〉/〈x, x〉, x 6=
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0, be the Rayleigh quotient of U . Since U is a symmetric positive definite linear operator on the Hilbert
space R(I − T )∗ = (Fix T ∗)⊥ = (Fix T )⊥, the spectral bounds:

s = inf{µ(x) : x ∈ (Fix T )⊥}, (7)

and
S = sup{µ(x) : x ∈ (Fix T )⊥} (8)

are positive and finite [33].
A bound for s is immediately given by (4),

s ≥ (1− c)2 , (9)

where c = cos(T ).
Also, we have ‖x− Tx‖ ≤ ‖x‖+ ‖Tx‖. Since, for x ∈ (FixT )⊥ we have ‖Tx‖ ≤ c, hence

S ≤ (1 + c)2 . (10)

Thus, a bound for the spectral condition number of the restricted operator U is given by

cond
(
(I − T )∗(I − T ) | (Fix T )⊥

) ≤
[
1 + c

1− c

]2

.

Algorithm 1 Conjugate gradient acceleration for linear fixed point problems
INPUT: x0 ∈ H
OUTPUT: PFix T (x0)

x = x0

r = −(I − T ∗)(I − T )x
rr = 〈r, r〉
u = r
for k = 1, 2, . . . do

if convergence then
return PFix T (x0) = x

else
v = (I − T ∗)(I − T )u
α = rr

〈u,v〉
x = x + αu
r0 = rr
r = r − αv
rr = 〈r, r〉
β = rr

r0
u = r + βu

end if
end for

2.2 The self-adjoint case

An important case is when the operator T is self-adjoint. For this case, we will show that the condition
cos(T ) < 1 is automatically satisfied under mild assumptions. First, some basic properties of self-adjoint
operators will now be discussed in a more general setting: Normal operators. For that, let us denote
M := Fix T . Clearly, If T commutes with PM then T commutes with PM⊥ .

Lemma 2.2 If T commutes with PM then T k − PM = (TPM⊥)k for all k.
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Proof. Since T commutes with PM⊥ , then,

(TPM⊥)k = T kPM⊥ = T k(I − PM ) = T k − T kPM .

Moreover, TPM = PM because PM is a fixed point of T , and so,

(TPM⊥)k = T k − T kPM = T k − PM .

Theorem 2.8 Let T be a normal operator such that T commutes with PM . Then, if limk→∞‖T kx−PMx‖ =
0 for all x ∈ H, then cos(T ) < 1.

Proof. If T commutes with PM , using Lemma 2.2, we have for all x ∈ H

limk→∞‖T kx− PMx‖ = limk→∞‖(TPM⊥)kx‖ = 0.

Moreover, limk→∞‖(TPM⊥)kx‖ = 0 for all x ∈ H if and only if limk→∞(TPM⊥)k = 0 (see, e.g., [3]), which
implies that limk→∞‖(TPM⊥)k‖ = 0. Since TPM⊥ is also a normal operator then ([3])

‖(TPM⊥)k‖ = ‖(TPM⊥)‖k,

and hence
limk→∞‖(TPM⊥)‖k = 0.

Therefore ‖(TPM⊥)‖ < 1, and so
cos(T ) = ‖(TPM⊥)‖ < 1.

Summing up, if T is normal and T commutes with PFix T , and the fixed point method converges, then the
range of I−T is closed an we can apply the conjugate gradient acceleration. For example, if T = 1

n

∑n
i=1 PMi

(Cimmino’s method), since the projection operators are self-adjoint then T is also a self-adjoint operator.
Additionally, PMPMi = PMiPM = PM , thus T commute with PM , and the fixed point method converges
(limk→∞‖T kx−PMx‖ = 0), then cos(T ) < 1. In conclusion, we can apply the conjugate gradient acceleration
directly to Cimmino’s method.

2.2.1 Finite dimensional Case

The application of the conjugate gradient method to the related least-squares optimization problem (1) has
the clear disadvantage of increasing the condition number of the involved linear operator. As we will discuss
in our numerical results section, this in turn has an increasing effect in the number of required iterations for
convergence when solving finite dimensional problems. If T is non-expansive the operator (I − T ) is clearly
positive semi-definite. If the operator (I − T ), is symmetric and positive semi-definite then the proposed
optimization approach could be applied directly to the system (I−T )x = 0, described above, for converge to
the fixed points of T . An important case for which the operator I−T is symmetric and positive semi-definite
is Cimmino’s method. Based on this important argument, for the rest of this work we will be interested in
this method instead of other methods where the operator T is not symmetric.

The acceleration of Cimmino’s method has been studied in [29], where a technique is proposed to find the
projection onto the intersection of a finite number of closed subspaces of a Hilbert space. If M1,M2, . . . ,Mr

are closed subspaces of a Hlbert space H, this acceleration consists on minimizing, using the conjugate
gradient method, the following quadratic function:

f(x) =
1
2

r∑

i=1

‖x− PMix‖2 =
1
2

r∑

i=1

‖(I − PMi)x‖2. (11)

If a vector x ∈ ∩r
i=1Mi, then f(x) = 0 and x minimizes f . For this function, the gradient ∇f(x) = (I−TS)x

and the Hessian is ∇2f(x) = I − TS , where TS = 1
n

∑n
i=1 PMi(x), I − TS = 1

n

∑n
i=1(x− PMi(x)) and Mi is

a closed subspace for i = 1, . . . r. This approach is equivalent to applying the conjugate gradient method to
solve the linear symmetric semi-definite positive system ∇f(x) = 0, i.e.,

(I − TS)x = 0.

In Algorithm 2, Section 3, we present the acceleration scheme associated with Cimmino’s method for the
case when operator T is finite dimensional symmetric and positive semi-definite.
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Algorithm 2 Conjugate gradient acceleration for linear symmetric and positive semi-definite fixed point
problems

INPUT: x0 ∈ H
OUTPUT: PFix T (x0)

x = x0

r = −(I − T )x
rr = 〈r, r〉
u = r
for k = 1, 2, . . . do

if convergence then
return PFix T (x0) = x

else
v = (I − T )u
α = rr

〈u,v〉
x = x + αu
r0 = rr
r = r − αv
rr = 〈r, r〉
β = rr

r0
u = r + βu

end if
end for

3 Acceleration of MAP for linear varieties

In this section, we will extend the acceleration of Cimmino’s method for the case of closed linear varieties. A
linear variety is the translation of a subspace, i.e. any linear variety V can be written as V = v0 + S where
S is a subspace. The subspace S is unique in this representation, but any vector in V can play the role of
v0.

Let H be a Hilbert space, V1, V2, . . . Vn closed linear varieties of H, V = ∩n
i=1Vi, V 6= ∅, and x ∈ H. The

problem to consider is: Find the projection of a vector x onto the linear variety V , PV (x), i.e. the closest
point to x in V . A technique for solving this problem is Cimmino’s method, that consists in the iteration:

xk+1 =
1
n

n∑

i=1

PVi(xk)

with x0 = x. However, as explained before, Cimmino’s method is known for being slow.
As shown in the previous section, a technique for accelerating Cimmino’s method in subspaces is to apply

directly the conjugate gradient method on the positive semi-definite linear system,

(I − TS)x = 0,

where TS = 1
n

∑n
i=1 PSi(x), I − TS = 1

n

∑n
i=1(x− PSi(x)), and Si is a closed subspace for i = 1, . . . n. This

accelerated iteration converges to P∩n
i=1Six0 where x0 is the initial iterate [29].

Nevertheless, in the case of linear varieties, due to the involved translation, the operator I − TV =
1
n

∑n
i=1(x − PVi(x)) is not a linear operator. Hence, we propose for that to solve the non linear equation

F (x) = 0, where F (x) = (I −TV )x, by a suitable technique for finding roots of a non-linear map. A suitable
technique will be described below. First, let us recall that V = ∩n

i=1Vi is also a linear variety of H.
We now list some well-known identities that will be useful in our subsequent results.

Lemma 3.1 Let V = S + v0 be a closed linear variety with S a closed linear subspace. Let PV be the
projection onto V . Then

1. PV (x) = PS(x) + PS⊥(v0), for any x ∈ H.
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2. x− PV (x) = PS⊥(x− v0), for any x ∈ H.

Where PS⊥ = I − PS is the projection onto the orthogonal complement of S.

Let Vi be linear varieties for i = 1, . . . , n. We now define F : <n 7→ <n as follows

F (x) =
1
n

n∑

i=1

(x− PVi
(x)). (12)

Our next result establishes that the roots of F (x) corresponds to points in V = ∩n
i=1Vi.

Theorem 3.1 F (x) = 0 if and only if x ∈ ∩n
i=1Vi.

Proof.

F (x) =
1
n

n∑

i=1

x− PVi(x) =
1
n

n∑

i=1

PSi
⊥(x− v0) = (x− v0)− 1

n

n∑

i=1

PSi(x− v0),

where v0 ∈ ∩n
i=1Vi. Therefore,

F (x) = 0 if and only if
1
n

n∑

i=1

PSi(x− v0) = x− v0.

We have reduced the problem from linear varieties to subspaces. We can observe that F (x) = 0 if and only
if Cimmino’s method (for subspaces) has a solution in x− v0 i. e.

x− v0 ∈ ∩n
i=1Si = S,

however, as v0 ∈ V then x ∈ S + v0 = V = ∩n
i=1Vi.

As a consequence, the solutions of F (x) = 0 are vectors in V = ∩n
i=1Vi. We are not interested in any

arbitrary vector in ∩n
i=1Vi, but in the closest vector, in ∩n

i=1Vi, to a given vector x. This special task can
be accomplished if we use specialized methods for solving F (x) = 0. In other words, in general, standard
methods (Newton-type methods) for solving F (x) = 0 do not necessarily have the optimality property
described above. In contrast, any iterative method that uses plus or minus the residual direction, F (xk), as
a search direction has automatically the desired optimality property. Fortunately, residual methods of this
kind, with additional practical features, have been recently developed, and will be described and analyzed
in the next subsection.

Before describing such a suitable method for solving the nonlinear system F (x) = 0 given by (12), we need
to identify the Fréchet derivative of F , F ′(x), and some of its properties. For that we now take advantage of
the equivalence of applying Cimmino’s method on the linear varieties, Vi’s, and Cimmino’s method on the
subspaces Si’s, assuming the knowledge of a hypothetical v0 ∈ V = ∩n

i=1Vi.

Lemma 3.2 The equation F (x) = 0 is equivalent to (I−TS)x = b with b = (I−TS)v0 and TS = 1
n

∑n
i=1 PSi ,

for any v0 ∈ V . Moreover, the Fréchet derivative of F (x) is given by F ′(x) = (I − TS).

Proof.

F (x) =
1
n

n∑

i=1

(x− PVi(x)) = (x− v0)− 1
n

n∑

i=1

PSi(x− v0) =

(
1
n

n∑

i=1

PSi(v0)− v0

)
−

(
1
n

n∑

i=1

PSi(x)− x

)
,

then

F (x) = 0 ⇐⇒
(

x− 1
n

n∑

i=1

PSi(x)

)
=

(
v0 − 1

n

n∑

i=1

PSi(v0)

)
,

and therefore
F (x) = 0 ⇐⇒ (I − TS)x = b ≡ (I − TS)v0.

Clearly, from this equivalence, the Fréchet derivative of F (x) is given by F ′(x) = (I − TS).
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Theorem 3.2 The Fréchet derivative of F , defined by (12), is self-adjoint and positive semi-definite.

Proof. From Lemma 3.2, F ′(x) = (I − TS), and the operator (I − TS) is clearly self-adjoint. To establish
that it is positive semi-definite, consider the following calculations, for any x 6= 0:

〈 1
n

n∑

i=1

(I − PSi)x, x〉 =
1
n

n∑

i=1

〈(I − PSi)x, x〉,

but (I − PSi
) = PSi

⊥ is also a projection. Hence,

〈(I − TS)x, x〉 =
1
n

n∑

i=1

〈PSi
⊥x, x〉 =

1
n

n∑

i=1

‖PSi
⊥x‖2 ≥ 0.

If we known a vector v0 ∈ ∩n
i=1Vi then the problem can be seen again as a subspace problem. In that

case, F (x) = 0 becomes a positive semi-definite linear system. In fact, the problem to be solved would be
(I − TS)x = b, where TS = 1

n

∑n
i=1 PSi

(x) and b = (I − TS)v0, and we could use the conjugate gradient
acceleration as described in the previous section.

We would like to stress out that the Fréchet derivative, F ′(x) = (I − TS), of the map F (x) defined in
(12) cannot be explicitly known since it depends on the operator TS which, in general, is not known when
dealing with linear varieties or it could be computationally expensive to obtain. Therefore, the conjugate
gradient method cannot be used in the presence of linear varieties. However, the properties of F ′(x) that will
be analyzed in our next subsection guarantees convergence of a specialized residual scheme to be described
for solving nonlinear systems of equations (i.e., in the finite dimensional case).

3.1 Residual methods for nonlinear systems

Residual methods that systematically use plus or minus the residual direction, F (xk), as a search direction
for solving large-scale nonlinear system of equations F (x) = 0, have been recently proposed and analyzed
by La Cruz et al. [36, 37]. As we will discuss later on this subsection, these schemes have the advantage for
our special problem, that they automatically converge to the desired closest point to the given initial point.

The residual iterations (DFSANE and SANE) proposed and analyzed in [36, 37], for finite-dimensional
nonlinear problems, are defined as

xk+1 = xk ± αk F (xk), (13)

where αk > 0 is the step-length and the search direction is either F (xk) or −F (xk) depending on which one
is a descent direction for the merit function

f(x) = ‖F (x)‖2 = 〈F (x), F (x)〉. (14)

These ideas have become effective, and competitive schemes for solving large-scale nonlinear systems, when
the step lengths are chosen in a suitable way. The convergence of (13) is attained, for general nonlinear
problems, when it is associated with a free-derivative non-monotone line search, fully described in [36].
Fortunately, since the Jacobian of F (x), given by (12), is symmetric and positive semi-definite (Lemma 3.2
and Corollary 3.2) we will have convergence for the pure method, i.e., without the globalization strategy,
and moving along the direction −F (xk) which is always a descent direction for f(x), in our case.

For the choice of the step-length αk > 0, there are many options for which convergence is guaranteed. A
well-known choice is the non-monotone spectral choice that has interesting properties, and is defined as the
absolute value of

αk =
〈sk−1, sk−1〉
〈sk−1, yk−1〉 , (15)

where sk−1 = xk − xk−1, and yk−1 = F (xk) − F (xk−1). Obtaining the step length using (15) requires a
reduced amount of computational work, accelerates the convergence of the process, and involves the last two
iterations in such a way that incorporates first order information into the search direction [4, 9, 41, 21].
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Algorithm 3 DFSANE for F (x) in its pure form
1: Let X0 ∈ H, α0 ∈ <, α0 6= 0

2: for k = 0, 1, · · · do
3: xk+1 = xk − αk F (xk)
4: sk = xk+1 − xk

5: yk = F (xk+1)− F (xk)
6: αk+1 = 〈sk, sk〉/〈sk, yk〉
7: end for

Remark 2. Algorithm 3 produces a sequence {xk} that converges globally, i.e., from any initial guess x0,
to a vector x̄ such that F (x̄) = 0. This theoretical result follows directly from [22, Theorem 2.1], applied to
the equivalent formulation (11), since the Jacobian of F is symmetric and positive semi-definite.

To close this section we now establish that the limit point of the sequence {xk} generated by Algorithm
3 has the optimality property of being the closest vector, in ∩n

i=1Vi, to the given initial vector x0. First, we
show two required results.

Lemma 3.3 Let V = ∩n
i=1Vi, v0 ∈ V , Vi = Si + v0, V = S + v0, S = ∩n

i=1Si, then

PSF (x) = 0.

Proof.

PSF (x) = PS
1
n

n∑

i=1

(x− PVi(x)) =
1
n

n∑

i=1

PS (x− v0 − PSi(x− v0)) =
1
n

n∑

i=1

[PS(x− v0)− PSPSi(x− v0)] ,

but PSPSi = PS because S ⊆ Si, i = 1, . . . , n.
Hence,

PSF (x) =
1
n

n∑

i=1

[PS(x− v0)− PS(x− v0)] = 0.

Theorem 3.3 The iteration xk+1 = xk − αkF (xk) with x0 ∈ H verifies,

PV (xk+1) = PV (xk), k = 0, . . . ,

Proof. Combining Lemma 3.1 and Lemma 3.3, we have

PV (xx+1) = PS(xk+1) + PS⊥(v0)
= PS(xk − αkF (xk)) + PS⊥(v0)
= PS(xk)− αkPSF (xk) + PS⊥(v0)
= PS(xk) + PS⊥(v0)
= PV (xk).

By induction, all the iterates of {xk} have the same projection into the linear variety V . As the iteration
converges to a vector v ∈ V , we have,

v = PV (v) = PV (x0).

We summarize this in the following theorem.

Theorem 3.4 The iteration xk+1 = xk − αkF (xk) generated by Algorithm 3, from x0 ∈ H, converges to
PV (x0).
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4 Numerical experiments

We compare our acceleration schemes, based on low-cost optimization techniques, with some well-know
acceleration schemes that can be found in the literature, and also with the original alternating projection
methods with no acceleration involved. We will present experiments for some selected subspace problems
and also on some selected linear variety problems. All our experiments were run on an Intel Core 2 Duo
using MATLAB 7.6. In all the experiments and for all the considered methods, we stop the process when
the norm of the residual is less than or equal to 10−8. For each scenario (subspaces or linear varieties) we
use a different norm that will be specified below.

4.1 Projecting onto subspaces

We compare the methods of Cimmino and von Neumann-Halperin (MAP) with several different accelerated
versions:

1. von-Neumann-Halperin type methods:

(a) Clasical von-Neumann-Halperin method (MAP without acceleration).

(b) Gearhart and Koshy acceleration [23] (see also Bauschke et al. in the finite dimensional case [6]).

(c) (New) Conjugate gradient method to minimize f(x) = 1
2‖x − Tx‖2 where T is the operator

associated with the von-Neumann-Halperin method (MAP-CG).

2. Cimmino type methods:

(a) Clasical Cimmino’s method (without acceleration).

(b) (New) Conjugate gradient method to minimize f(x) = 1
2‖x − Tx‖2 where T is the operator

associated with the Cimmino’s method (CIM-CG-LS).

(c) (New) Conjugate gradient method to solve (I − T )x = 0 where T is the symmetric positive
semi-definite operator associated with the Cimmino’s method (Cimmino-CG).

In our experiments alternating projection methods are used for solving saddle point problems, which appear
in a wide range of applications (see e.g., [8]).

(
A BT

B 0

)(
x
λ

)
=

(
f
0

)
, (16)

where

(H1) B ∈ <m×n is a matrix with rank(B) = m,m ≤ n,

(H2) A ∈ <n×n is a symmetric positive definite matrix.

Under hypotheses (H1,H2), if (x, λ)T solves (16), then the vector x corresponds to the orthogonal projection
of xu = A−1f onto ker B, in the scalar product 〈., .〉A. To be precise, the m involved subspaces, in this case,
are given by: {x : 〈bi, x〉A = 0}, for 1 ≤ i ≤ m, where bi represents the i-th row of B [28, 29].

We compare these methods for solving saddle point problems from:

• A selection of saddle point problems from the CUTEr collection [24].

• A set of Stokes saddle point problems generated using IFISS incompressible flow software associated
described in the book by Elman et al. [20] (stokes testproblems):

– STOKES1: Channel domain with natural outflow boundary.

– STOKES2: Flow over a backward facing step.

– STOKES3: Lid driven cavity.

– STOKES4: Colliding flow.
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Figure 1: Different accelerations for a CUTEr problem (AUG2DCQP)

• Several domain decomposition saddle point problems discussed in [28] (DD1, DD2, DD3 and DD4).

For these subspace problems, we use the norm defined by ‖x‖A = 〈x,Ax〉. For all sets of problems,
the matrix A ∈ <n×n is symmetric and positive definite, and B ∈ <m×n is a full row rank matrix. For
the CUTEr problems, and also for Stokes problems we set the block (2, 2) of the saddle point matrix to be
the zero matrix, for obtaining a system like (16). It is important to note that an augmented Lagrangean
technique has been used to improve the behavior of all considered methods, and also to guarantee that the
A matrix is positive definite. To be precise, the A matrix in (16) has been replaced by A + γBT B, where
γ = ‖A‖F /‖B‖2F [8]. Moreover, for the problems coming from the CUTEr Library, we also added to the
left upper block of (16) the scalar 0.01 times the identity matrix, to improve the condition number of that
block. All experiments were obtained by a one-row block partition of B (number of subspaces equal to m,
where m is the number of rows of the matrix B).

4.1.1 Numerical results

• Accelerations based on MAP:

Table 1 shows the convergence behavior of the different accelerations of von Neumann-Halperin type
of methods. Among the methods based on the method of von-Neumann-Halperin, there is no one
that can be declared the best for all the considered problems. The conjugate gradient acceleration
of the MAP method has the disadvantages caused by the increase of conditioning resulting from the
resolution of a least-squares problem; and the higher cost per iteration is due to the projection onto
each subspace which is made twice per iteration. However, it was quite consistent in all problems.
The acceleration proposed by Gearhart and Koshy was inconsistent in several of these problems, and
required a large number of iterations for convergence. This inconsistent behavior of the Gearhart and
Koshy acceleration was already commented in [6].

• Accelerations based on Cimmino’s method:

Table 2 shows the convergence behavior of the different accelerations for Cimmino’s method. The
Cimmino-CG acceleration applied to the system (I − T )x = 0 is clearly superior than the other
accelerations, including the acceleration based in the method of von-Neumann. Cimmino-CG was
in general much better than the others in number of iterations, and also in CPU time, required for
convergence. Since (I −T ) is a symmetric operator, the ill-conditioning effect that comes from solving

13



Problem MAP Gearhart-Koshy MAP-CG
Name m n iter time iter time iter time
AUG2DCQP 1600 3280 * * * * 371 407.81
CVXQP1S 50 100 652 1.42 312 1.70 53 0.39
CVXQP2S 25 100 13 0.03 11 0.03 39 0.09
CVXQP3S 75 100 * * * * 206 1.20
DUALC1 215 223 2 0.06 * * 2 0.13
DUALC5 278 285 2 0.08 * * 2 0.16
DUALC8 503 510 1 0.30 * * 2 0.47
GOULDQP2S 349 659 * * * * 1 0.38
KSIP 1001 1021 * * * * 21 20.06
MOSARQP1 700 3200 2 6.28 * * 4 6.97
PRIMAL1 85 410 20 0.39 21 0.39 14 0.56
PRIMAL2 96 745 19 0.66 19 0.74 14 0.72
PRIMAL3 111 856 33 1.75 31 1.75 19 1.81
PRIMAL4 75 1564 17 1.19 18 1.23 14 1.94
PRIMALC1 9 239 7 0.03 * * 4 0.03
PRIMALC2 7 238 6 0.03 * * 3 0.03
QGROW15 300 645 6 0.53 * * 6 0.59
QGROW22 440 946 6 0.84 * * 9 1.41
QSCFXM3 990 1800 * * * * 293 86.98
STOKES1 1024 2178 * * * * 256 173
STOKES2 2816 5890 * * * * 247 94.52
STOKES3 256 578 306 7.31 199 4.84 109 5.45
STOKES4 1024 2178 264 7.25 187 5.14 96 5.36
DD1 80 1600 199 1.66 156 1.32 102 1.80
DD2 85 1925 546 8.81 * * 134 4.36
DD3 120 3600 215 6.75 151 4.31 135 9.56
DD4 125 3975 * * * * 209 13.73

Table 1: Comparison between different accelerated von Neumann-Halperin methods for subspaces
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Figure 2: Different accelerations for the 30-rows matrix bcsstk04 (linear varieties)
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Problem Cimmino’s CIM-CG-LS Cimmino-CG
Name m n iter time iter time iter time
AUG2DCQP 1600 3280 * * * * 100 50.73
CVXQP1S 50 100 * * 104 1.70 54 0.33
CVXQP2S 25 100 * * 25 0.09 17 0.06
CVXQP3S 75 100 * * 605 3.80 133 0.53
DUALC1 215 223 * * 2 0.19 2 0.09
DUALC5 278 285 * * 2 0.16 2 0.16
DUALC8 503 510 * * 2 0.48 2 0.38
GOULDQP2S 349 659 * * 2 0.38 2 0.38
KSIP 1001 1021 * * 11 11.37 6 3.92
MOSARQP1 700 3200 * * 4 7.05 2 6.38
PRIMAL1 85 410 * * 21 0.72 10 0.28
PRIMAL2 96 745 * * 21 1.00 10 0.45
PRIMAL3 111 856 * * 32 2.98 13 0.88
PRIMAL4 75 1564 * * 21 1.94 10 1.08
PRIMALC1 9 239 133 0.33 4 0.03 3 0.03
PRIMALC2 7 238 101 0.23 4 0.03 3 0.03
QGROW15 300 645 * * 7 0.70 5 0.47
QGROW22 440 946 * * 10 1.61 7 0.91
QSCFXM3 990 1800 * * * * 149 32.16
STOKES1 1024 2178 * * 111 82.94 72 27.38
STOKES2 2816 5890 * * 259 99.55 101 22.89
STOKES3 256 578 * * 139 7.17 44 1.30
STOKES4 1024 2178 * * 97 5.64 35 1.28
DD1 80 1600 * * 179 3.34 62 0.63
DD2 85 1925 * * 182 6.23 79 1.36
DD3 120 3600 * * 240 16.28 72 2.72
DD4 125 3975 * * 209 13.73 102 3.80

Table 2: Comparison between different accelerated Cimmino’s methods for subspaces

a least-squares problem is avoided, and the cost per iteration does not increase because a projection
onto each subspace is performed only once per iteration.

4.2 Projecting onto linear varieties

Our numerical experiments consist in finding the projection of x0 onto the linear variety V = ∩m
i=1Hi where

Hi is the hyperplane defined, for i = 1, . . .m, by:

Hi = {x : 〈x, ai〉 = i}.

In all the experiments of this section, x0 = (1, 1, ..., 1)T . The vectors ai come from the first m rows of
matrices chosen from the Hilbert matrix (MATLAB routine hilb), and from matrices coming from the
Harwell-Boeing collection [19]. We compare the performance of the following methods: Cimmino’s method,
Kaczmarz’s method [31], and the proposed acceleration for Cimmino’s method combined with the DFSANE
method (Cimmino-DFSANE).

4.2.1 Numerical results

In Table 3 we can observe that for the selected test problems the acceleration Cimmino-DFSANE strongly
accelerates the classical Cimmino’s method, and in almost all test problems it has a much better performance
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than the Kaczmarz’s method. As well as for Cimmino’s method, the Cimmino-DFSANE acceleration has ad-
vantages in parallel machines because all the projections onto each linear variety can be made independently
(in sharp contrast to Kaczmarz’s method).

We can also observe that as the number of linear varieties increases, the relative improvement in perfor-
mance also increases.

5 Concluding remarks

We have presented and analyzed acceleration schemes for some well-known alternating projection methods.
Our acceleration schemes are based on the application of low-cost numerical optimization techniques over
some equivalent formulations of the original problem: Find the closest point, to a given point, in the
intersection of several given sets that belong to a Hilbert space H.

When the involved sets are subspaces, we combine the conjugate gradient (CG) method with MAP and
also with Cimmino’s method, and produce a significant acceleration in both cases, according to our prelimi-
nary and encouraging numerical results. For MAP we apply CG on the standard least-squares approach; and
for Cimmino’s method we apply CG directly on the nonlinear system (I −T )x = 0, where T = 1

n

∑n
i=1 PMi

,
taking advantage of the fact that (I − T ) is a self-adjoint and positive semi-definite operator. This direct
approach combined with Cimmino’s method produces the most effective choice of the ones considered in our
numerical results for subspaces.

When the involved sets are linear varieties we concentrate our attention on Cimmino’s method. Unfor-
tunately, the associated operator I − TV = 1

n

∑n
i=1(x − PVi(x)) is not a linear operator, and so the use of

CG is not possible, for general problems. For that case, we propose and analyze an acceleration technique
that combines Cimmino’s method with a simplified version of DF-SANE, a low-cost derivative-free technique
for solving nonlinear systems of equations. This combined scheme produces a significant acceleration when
compared to previously known techniques, including the well-known Kaczmarz method. An interesting line
of research is to extend this machinery to accelerate the alternating projection methods specially designed
for solving convex feasibility problems.
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Matrix Cimmino-DFSANE Kaczmarz Cimmino
Name Dimension m iter time iter time iter time
Hilbert 5 2 8 0.01 407 0.28 1576 1.03
Hilbert 5 3 32 0.04 * * * *
Hilbert 5 4 264 0.25 * * * *
Hilbert 10 2 8 0.01 304 0.17 1176 0.59
Hilbert 10 3 29 0.03 * * * *
Hilbert 20 2 6 0.01 256 0.22 991 0.41
Hilbert 20 3 23 0.03 * * * *
bcspwr02 49 20 37 0.26 37 0.31 1661 11.89
bcspwr02 49 40 337 4.59 1413 19.70 * *
bcspwr02 49 49 3668 63.33 * * * *
bcspwr03 118 10 49 0.21 63 0.22 1086 3.93
bcspwr03 118 20 66 0.51 101 0.70 4240 30.05
bcspwr03 118 30 103 1.13 185 2.06 * *
bcspwr03 118 50 165 2.97 264 4.84 * *
bcspwr03 118 100 585 20.83 4009 146.42 * *
bcspwr03 118 118 3834 166.28 * * * *
bcspwr04 274 10 16 0.10 12 0.19 253 1.11
bcspwr04 274 20 34 0.29 38 0.31 1652 12.12
bcspwr04 274 30 49 0.67 59 0.69 3103 34.93
bcspwr04 274 50 545 10.54 * * * *
bcspwr04 274 274 * * * * * *
mcca 180 10 29 0.16 60 0.30 1235 4.31
mcca 180 20 37 0.28 42 0.33 1674 11.53
mcca 180 50 40 0.93 40 0.61 4794 87.45
mcca 180 100 298 11.98 1323 51.23 * *
mcca 180 180 307 22.36 1101 81.18 * *
mcfe 765 10 10 0.04 5 0.05 157 0.73
mcfe 765 20 137 1.13 565 4.63 * *
mcfe 765 50 164 3.46 502 10.42 * *
mcfe 765 100 152 6.64 412 17.71 * *
mcfe 765 200 125 11.75 246 22.74 * *
mcfe 765 500 383 114.23 * * * *
mcfe 765 765 404 210.65 * * * *
Sherman2 1080 10 634 2.83 3100 15.38 * *
Sherman2 1080 20 410 3.53 2955 28.33 * *
Sherman2 1080 30 3595 46.75 * * * *
bcsstk01 48 10 39 0.20 41 0.12 966 3.67
bcsstk01 48 30 405 4.43 1137 12.82 * *
bcsstk02 66 10 62 0.43 91 0.59 1641 7.71
bcsstk02 66 20 119 1.07 337 3.12 * *
bcsstk02 66 30 231 3.24 1254 18.22 * *
bcsstk02 66 50 520 13.62 4306 121.01 * *
bcsstk03 112 10 1217 4.57 * * * *
bcsstk03 112 20 * * * * * *
bcsstk04 132 10 15 0.12 10 0.11 450 3.67
bcsstk04 132 30 54 0.66 131 1.61 6470 81.78
bcsstk04 132 50 157 4.04 2018 44.20 * *
bcsstk04 132 100 1088 48.82 * * * *

Table 3: Comparison between different methods for linear varieties
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