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Abstract

Nonlinear matrix equations arise in different scientific topics, such as applied statis-
tics, control theory, and financial mathematics, among others. As in many other scien-
tific areas, Newton’s method has played an important role when solving these matrix
problems. Under standard assumptions, the specialized Newton’s methods that have
been developed for specific problems exhibit local and q-quadratic convergence and
require a suitable initial guess. They also require, as usual, a significant amount of
computational work per iteration, that in this case involve several matrix factoriza-
tions per iterations. As expected, whenever a Newton’s method can be developed,
a secant method can also be developed. Indeed, more recently, secant methods for
solving specific nonlinear matrix problems have been developed opening a new line of
research. As in previous scenarios, these specialized secant methods exhibit local and
q-superlinear convergence, also require a suitable initial guess, and avoid the use of
derivatives in the formulation of the schemes.

In this review we start by recalling the presence of Newton’s method and the secant
methods, and also their classical relationship, in different and sometimes unexpected
scenarios for vector problems. Then we present and describe the state of the art in
the use of Newton’s method and also the secant method in the space of matrices. A
second objective is to present a unified approach for describing the features of these
classical schemes, that in the space of matrices represent an interesting research area
with special features to be explored.

Keywords: Newton’s method, secant method, nonlinear matrix problems.

1 Introduction

Newton’s method has played a fundamental role in the development of numerical algo-
rithms for solving scientific computing problems in general. It is simple to describe, and so
it is appealing, because it appears naturally from considering a Taylor approximation to
a certain function associated with the problem at hand. It has been rediscovered several
times through history for solving specialized problems. Moreover, historically, whenever a
Newton’s method has been proposed to solve specific problems, secant methods have also
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been developed for the same problem. The main reason is that secant methods avoid the
explicit knowledge of derivatives at the cost of reducing the asymptotic convergence from
q-quadratic to q-superlinear, which in practice can be seldom appreciated.

One of the objectives of this review is to unify the Newton-secant connection for
several scenarios and for important applications. Special attention is paid to the historical
process in the space of vectors, describing some of the equivalent well-known methods.
The other main objective is to present some of the recent developments for solving matrix
problems using Newton’s method as well as secant methods. In that case the movement
from vectors to matrices is an intriguing and attractive topic that has produces several
impressive specialized Newton’s method, and quite recently some secant methods that
retain the fundamental principles: No explicit knowledge of derivatives and q-superlinear
convergence.

In a general setting, let us consider the following nonlinear problem:

given F : H → H find X∗ ∈ H such that F (X∗) = 0, (1)

where H is a normed space, and F is a Fréchet differentiable map. We denote by F ′ the
Fréchet derivative of F , and by ‖X‖ the norm of X. If H is an inner product space, then
‖X‖2 = 〈X, X〉 will be the norm induced by the inner product. During the presentation
of our review we will consider the finite dimensional space H = Rn for vector problems,
and depending on the application, we will consider H = Cn×n or H = Rn×n for matrix
problems.

The well-known Newton’s method for solving equation (1) can be written, in a general
framework, as:

Algorithm 1 Newton’s method
1: Given X0 ∈ H
2: for k = 0, 1, · · · do
3: Solve F ′(Xk)Sk = −F (Xk)
4: Xk+1 = Xk + Sk

5: end for

Note that we need F ′ to find Sk at each iteration of Algorithm 1 and in order to obtain
F ′ we can use the Taylor series for F about X,

F (X + S) = F (X) + F ′(X)S + R(S), (2)

where R(S) is such that

lim
‖S‖→0

‖R(S)‖
‖S‖ = 0.

The Taylor expansion (2) allows us to identify the application of F ′(X) on S which is
required to solve the linear problem of step 3 in Algorithm 1.

As a general principle, whenever a Newton’s method is applicable, a suitable secant
method can be obtained, that hopefully has interesting features to exploit. For example,
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in the well-known scalar case, the secant method does not require the derivative, and only
uses function evaluations. In that case f : C→ C, and the secant method can be written
as follow:

xk+1 = xk − f(xk)
ak

,

where ak satisfies that f(xk) = f(xk−1) + ak(xk − xk−1) for k ≥ 0, and x−1, x0 ∈ C are
given. Notice that ak = f ′(xk) for all k yields the scalar Newton iteration. In a recent
work [137], a full investigation is included on the historical development of the secant
method for one variable.

For different scenarios, from vector problems to matrix problems, we will discuss in
this review specialized Newton’s methods and the suitable secant methods that have been
developed to solve problem (1).

2 Vector problems

Let F : Rn → Rn. Consider the linear model Mk(x) = F (xk) + J(xk)(x − xk) that
approximates F at xk, where J(xk) represents the Jacobian matrix at xk. Notice that
Mk(xk) = F (xk). The next iterate, xk+1, in Newton’s method is obtained by solving
Mk(xk+1) = 0. Therefore, xk+1 = xk +sk, where sk satisfies the linear system of equations
J(xk)sk = −F (xk). Solving this linear system for every k represents the computational
effort of Newton’s method. The next result shows, under standard assumptions, the local
and q-quadratic convergence of Newton’s method for solving (1). For a proof see [54].

Theorem 2.1 Let F : Rn → Rn be a continuously differentiable function in an open and
convex set D ⊂ Rn. Let us assume that there exists x∗ ∈ Rn and r, β > 0, such that
N(x∗, r) ⊂ D, F (x∗) = 0, J(x∗)−1 exists with ‖J(x∗)−1‖ ≤ β, and J ∈ Lipγ(N(x∗, r)).
Then there exists ε > 0 such that for all x0 ∈ N(x∗, ε), the sequence {xk}k≥0 generated by
the iteration xk+1 = xk − J(xk)−1F (xk), is well-defined, converges to x∗, and satisfies

‖xk+1 − x∗‖ ≤ βγ‖xk − x∗‖2, ∀k ≥ 0. (3)

In here, we introduce the notation J ∈ Lipγ(N(x∗, r)) which means that there exists
γ > 0 such that for every x, y ∈ N(x∗, r) it follows that ‖J(x)− J(y)‖ ≤ γ‖x− y‖, where
N(x∗, r) denotes the open ball with center x∗ and radius r. From (3) we conclude that
Newton’s method has local and q-quadratic convergence when the matrix J(x∗) is non-
singular, which is clearly a great advantage. On the negative side, Newton’s method only
has local convergence, so it requires globalization strategies to be practically effective and
needs to solve a linear system of equations per iteration. Concerning globalization strate-
gies, there are two main possibilities that can be associated with Newton-type methods
and also with secant-type methods: Line search strategies and trust region schemes. In
this work we do not concentrate on the issue of globalization techniques. For a complete
treatment of this topic we recommend the book by Bertsekas [15], the book by Conn et
al. [40], the book by Fletcher [68], and the book by Nocedal and Wright [133]. In the
general setting of Banach spaces, Newton’s method, as presented in Algorithm 1, has been
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extensively studied. The most important theoretical tool in that case to prove the conver-
gence of Newton’s method is the well-known Newton-Kantorovich Theorem that has been
extended and applied to several different problems. For a complete survey of Newton’s
method in Banach spaces and the Newton-Kantorovich Theorem, see the recent book by
Argyros [4]. A historical review about the convergence analysis of Newton’s method can
be found in [134].

For solving problem (1) when F : Rn → Rn there also exist the so-called secant-
type methods, also known as quasi-Newton methods [24]. The main feature of the secant
methods is that they do not require the explicit knowledge of the Jacobian map, J(x). As
in the development of Newton’s method, at every iteration k, the following linear model
is solved to obtain xk+1

M̂k(x) = F (xk) + Ak(x− xk). (4)

In the vector case, Ak is an n× n matrix that is expected to approximate J(xk). Clearly
if Ak = J(xk), for all k, then Newton’s method is recovered. However, the idea is to avoid
the use of J(xk), and so the matrix Ak is obtained among those that satisfy F (xk−1) =
M̂+(xk−1). When this condition is imposed, we obtain the so-called secant equation,

Aksk−1 = yk−1, (5)

where sk−1 = xk − xk−1 and yk−1 = F (xk)− F (xk−1). As in the scalar case, equation (4)
satisfies M̂k(xk) = F (xk) and the next iterate, xk+1, is the one that satisfies M̂k(xk+1) = 0.
Any method generated by this procedure is known as a secant-type method or a quasi-
Newton method, and can be written as

xk+1 = xk −A−1
k F (xk),

where the vector x0 and the matrix A0 must be given.
Notice that equation (5) represents a linear system of n equations and n2 unknowns

(the n2 elements of Ak) which implies that there are infinitely many ways of building the
matrix Ak at every iteration. A very successful way of building Ak at every k was proposed
by Broyden [26], and later analyzed by Dennis [50]. The so-called Broyden’s method is
given by the following formula for Ak+1

Ak+1 = Ak +
(yk −Aksk)st

k

st
ksk

. (6)

The formula (6) for building Ak+1 is obtained as the closest matrix to Ak that satisfies
the secant equation (5), see [54, 68]. Broyden’s method has been extended in several
ways and has produced a significant body of research for many different problems. For
a complete description of Broyden’s method, its extensions and applications see, e.g.,
[27, 54, 123, 133, 175].

Broyden’s algorithm can be written as
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Algorithm 2 Broyden’s method
1: Given x0 ∈ Rn, A0 ∈ Rn×n

2: for k = 0, 1, · · · do
3: Solve Aksk = −F (xk) . For sk

4: xk+1 = xk + sk

5: yk+1 = F (xk+1) + F (xk)

6: Ak+1 = Ak +
(yk −Aksk)st

k

st
ksk

7: end for

The next result establishes, under standard assumptions, the local and q-superlinear con-
vergence of Broyden’s method for solving (1). For details and a full proof see [54].

Theorem 2.2 Under the same hypothesis of Theorem 2.1, there exist positive constants ε
and δ such that if ‖x0−x∗‖2 ≤ ε and ‖A0−J(x∗)‖2 ≤ δ, then the sequence {xk} generated
by Algorithm 2 is well defined and converges q-superlinearly to x∗.

One of the most popular variants of Broyden’s method is the so-called inverse Broyden’s
method in which the inverse of the Jacobian matrix, J(xk)−1, is directly approximated
at every iteration [54]. The computational cost of the inverse version is similar to the
standard Broyden’s method except that the calculation of the vector sk, in Step 3 of
Algorithm 2, requires a matrix-vector product instead of the solution of a linear system.
For the inverse version we have that

A−1
k+1 = A−1

k +
(sk −A−1

k yk)yt
k

yt
kyk

, (7)

and A−1
0 must be given. As in the standard Broyden’s method the matrix A−1

k+1 given
according to (7) solves an optimization problem, that in this case is stated as

min
B∈Q(yk,sk)

‖B−1 −A−1
k ‖2,

where Q(yk, sk) = {B ∈ Cn×n : Bsk = yk}. In other words, Ak+1 satisfies the secant
equation and A−1

k+1 is the closest nonsingular matrix to A−1
k . Once again, under stan-

dard assumptions the inverse Broyden’s method is locally and q-superlinearly convergent
[52, 53, 54]. The inverse Broyden’s method will play an important role in Section 3, where
we describe the secant-type extensions recently developed for matrix problems.

Under some special assumptions on F , for solving (1), or for some special problems, a
faster rate of convergence than q-quadratic can be observed for Newton’s method (q-order
p, where p > 2). Moreover, some special methods have been developed at some additional
cost per iteration to accomplish that kind of very fast convergence (see, e.g., [64, 78, 110,
163, 168, 172]. For some of those special cases, under the same circumstances for which
Newton’s method shows a q-order p convergence, for p > 2, the secant-type methods also
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show a speed of convergence faster than q-superlinear, see for example [65, 85]. In the
scalar case, the relationship between the speed of Newton’s method and the speed of the
secant method has been characterized [146].

As well as Newton’s method, the secant-type methods have also been extended and
analyzed for solving nonlinear problems in Hilbert spaces, see e.g., [75, 150]. Newton’s
method has been extended for solving nonsmooth systems of nonlinear equations [36, 124,
149], and has been combined with interior point methods [76]. Similarly, the secant-type
methods have also been extended for nonsmooth problems [35, 116, 125, 139], and have
been combined with inexact schemes and nonstandard globalization strategies [18, 71].

2.1 Unconstrained optimization problems

The relationship between Newton’s method and secant methods has been suitably ex-
ploited in the development of numerical optimization algorithms, and hence it represents
one of the most important topics to illustrate the historical connection between them.

For solving smooth unconstrained optimization problems, the traditional approach is
to solve a nonlinear system with the gradient vector of the objective function, f : Rn →
R, i.e., find x ∈ Rn such that ∇f(x) = 0. Hence, for unconstrained optimization, we
recover problem (1) with F (x) = ∇f(x). Let us consider, without loss of generality, the
minimization problem.

The methods we consider belong to a large family of iterative methods that can be
written in a generic fashion as follows

xk+1 = xk + αkdk, (8)

where dk is a search direction, usually chosen as a descent direction i.e., dt
k∇f(xk) < 0, and

αk > 0 is the step length in the direction dk. Both dk and αk can be chosen to guarantee
convergence to local minimizers, according to some standard globalization strategies. A
very important family can be obtained by choosing the search direction as follows

dk = −H−1
k ∇f(xk),

where Hk is a nonsingular and symmetric matrix that pretends to approximate the Hessian
matrix of f at xk. Different ways of choosing dk and different ways of choosing αk produce
different methods. Two well-known methods are obtained when Hk = I, for all k, which
is known as the steepest descent method, the Cauchy method [30], or simply the gradient
method; and Hk = ∇2f(xk) (the Hessian at xk) for all k, that produces Newton’s method.
Notice that any possible scheme that approximates the inverse of the Hessian matrix to
obtain dk can be viewed as an inverse preconditioning strategy for the Cauchy method
[118]. See [34] for a preconditioning strategy of that kind, based on solving a suitable
differential equation by means of a marching scheme that improves the quality of the
approximation when k increases.

In practice, the direction dk in Newton’s method is obtained by solving the following
linear system of equations

∇2f(xk)dk = −∇f(xk),
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that can be solved inexactly, i.e., by using an iterative linear scheme and stopping pre-
maturely the internal solver, by monitoring the value of ‖F (xk)‖. The idea of stopping
prematurely the internal iterative solver goes back to Pereyra [138], who developed such a
combined scheme for solving two point boundary value problems, and was later generalized
and formalized by Dembo et al. [56]. The inexact Newton’s method has been associated
with globalization strategies [57], nonsmooth problems [124], and Krylov subspace meth-
ods [10, 25].

For the Newton iteration to be well-defined, we must assume that f is twice contin-
uously differentiable in the domain of interest. Moreover, in order to guarantee that the
Newton’s direction is a descent direction, it is enough to assume that the Hessian matrix
is symmetric and positive definite (PD) for all k. In that case, the inverse of the Hessian
is also PD and so

∇f(xk)tdk = −∇f(xk)t∇2f(xk)−1∇f(xk) < 0.

There exists several well-known techniques to modify the search direction to guarantee
that the descent condition is satisfied, including modified factorization techniques [54, 133],
and solving optimization subproblems as in the trust region approach [40]. Not all descent
directions are of the same quality. The quality of a descent direction dk can be measured
with the cosine that it forms with the negative gradient direction

cos θk =
−gt

kdk

‖gk‖ ‖dk‖ .

Concerning the secant-type methods, in order to reduce the computational effort re-
quired by Newton’s method, Davidon introduced [45] a very clever idea for optimization,
that provides a way of approximating the derivative (Hessian matrix) using only the gradi-
ent information evaluated at each iterate. Davidon’s method was the first secant method
for vector problems, and its computational advantages were immediately appreciated in
[69]. These very successful methods, called also quasi-Newton methods, are the natural
secant extension of Newton’s method for problems in vector spaces. For a complete dis-
cussion of quasi-Newton methods, see [53, 54]. The most successful ones are the DFP,
the BFGS, and the SR1 methods. All these methods belong to the family described in
(8), where now the matrix Hk is built according to some recipe to satisfy the secant equa-
tion (5). Hence, Hk will depend not only on xk, but also on Hk−1 and xk−1, see, e.g.,
[54, 133]. As in the Newton’s method, it is always possible to guarantee that dk is a
descent direction, and as before, the direction can be obtained inexactly [70]. The secant
methods for unconstrained optimization have also been extended for nonsmooth problems
[35, 116, 125].

2.2 Constrained optimization problems

Let us now discuss the extensions of Newton’s method and secant methods for solving the
constrained optimization problem, also known as the nonlinear programming problem,

minimize f(x) subject to h(x) = 0 and g(x) ≤ 0, (9)
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where f : Rn → R, h : Rn → Rm, and g : Rn → Rp. In the form (9) the problem is quite
general; it includes the unconstrained case when m = p = 0, and it also includes as special
cases linear and quadratic programs in which the constraint maps, h and g, are affine
and f is linear or quadratic, respectively. A function that plays a key role in constrained
optimization is the Lagrangian function defined by

L(x, λ, µ) = f(x) + λT h(x) + µT g(x),

where λ ∈ Rm and µ ∈ Rp are the Lagrange multiplier vectors.
We start our discussion with the following general observation: For unconstrained

optimization problems using either Newton’s method or quasi-Newton methods, we need
to solve a sequence of symmetric linear systems of equations. On the other hand, for solving
(9), extending both the Newton’s method and the secant formulations, the standard and
proper approach is to solve a sequence of quadratic programming problems in which,
at every iteration, the Hessian of the quadratic objective function is the Hessian of the
Lagrangian function or a secant approximation to the Hessian. This approach is called
the Successive Quadratic Programming (SQP) approach for solving (9). Several important
observations are in order. The success of the SQP methods depends on the existence of
rapid and robust schemes for solving quadratic programs. Fortunately, there are good
algorithms to solve them, and an excellent review on this topic can be found in [20]. There
are good implementations in both cases that guarantee local and fast convergence, i.e., q-
quadratic for Newton’s extension and q-superlinear for secant extensions (see [15, 68, 133]
for details).

As it usually happens, the earliest reference of an SQP algorithm was concerned with
the extension of Newton’s method [173], and later SQP-type methods were developed
to extend the secant method. The first secant-SQP method was introduced by Garcia-
Palomares and Mangasarian [73]. Further extensions and convergence analysis (local and
global) for SQP-Newton’s method can be found for example in [41, 59, 142], and for
SQP-secant methods in [22, 29, 55, 70, 84, 141, 167]. Besides the SQP approach, there
are some other options to extend Newton’s method and secant methods for solving (9).
For instance, the study of Newton’s method applied directly to the first order necessary
conditions for (9) can be found in [77, 161, 165], and a diagonalized multiplier version of
the SQP-secant method was discussed in [166]. See also Tapia [167] for optional extensions
of the secant method for solving (9), El-Bakry et al. [59] for the application of a Newton
interior-point methods for nonlinear programming problems, and Boggs et al. [21] for
a special treatment of the large-scale case. A quasi-Newton interior-point method for
nonlinear programming has also been analyzed in [122], and the connection of the trust-
region globalization strategy with SQP-type methods has received special attention, see
e.g., [31, 51, 58].

2.3 Additional vector problems

Besides the numerical optimization area, and the closely related topic of nonlinear systems
of algebraic equations, there are many other general vector-space scientific computing prob-
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lems and some specific applications in which the relationship between Newton’s method
and the secant methods appears.

In the numerical solution of nonlinear differential equations the traditional approach
is to discretize the region of interest and also the differential operators, and then solve the
associated nonlinear system of equation via numerical methods. As in some previously
described scenarios, the first attempts involved Newton’s method. For example, in the
special case of Two Point Boundary Value Problems (TPBVP) the use of Newton’s method
is analyzed in [2], and an inexact Newton’s version is introduced in [138]. Later on, as
it usually happens, quasi-Newton methods were introduced for solving TPBVP, see e.g.,
[83]. For a general discussion on the numerical solution of TPBVP see [5]. Some other
classical differential equation problems have also been attacked by Newton-type methods
which are not related to discretization schemes, see e.g., [164].

Another more recent case, in which the relationship between Newton’s method and the
secant method can be observed, is the so called parareal method that exploits parallelism
in time discretization for solving general nonlinear differential equations. It was introduced
for solving Partial Differential Equations (PDE) by Lions, Maday and Turinici [115], and
after been extended in several ways, it was recently analyzed by Gander and Vandewalle
[72]. In [72], the authors observed the connection of the parareal method with multiple
shooting, as analyzed by Chartier and Phillipe [32], for which quadratic convergence can
be established since the multiple shooting method can be viewed as Newton’s method. In
[72], they also analyze a variant first proposed by Baffico et al. [6] that clearly resembles
the secant method, and indeed, they establish superlinear convergence for that variant.
Nevertheless, as far as we know, the connection between the superlinearly convergent
variants of the parareal method and the classical secant method has not been pointed out
in the literature.

The numerical solution of optimal control problems is another interesting area in which
Newton’s method, and some of its variations, has played a very important role. In partic-
ular, Newton’s method has been combined with suitable globalization strategies specially
adapted to optimal control problems in [84, 104, 170]. Moreover, SQP-type extensions
have been proposed where the control variables receive a special treatment [55, 111].

Finally, we close this subsection describing some additional standard and well-known
scientific computing vector problems for which Newton’s method (or a closely related q-
quadratically or even faster convergent scheme) was proposed without being aware of the
connection, when the related numerical techniques were originally introduced. In most
cases, these methods are still known and referred in the literature by their original names,
although the connection with Newton’s method has been established. For these problems,
no secant counterpart has ever been developed.

The well-known iterative refinement scheme for solving linear systems of the form
Ax = b is a very good example of how Newton’s method is rediscovered for a special
application. Indeed, if an approximate solution, x̄, has been already obtained by any
method, and from that initial vector we apply Newton’s method on the (linear) map
F (x) = Ax− b we obtain an improved solution x̄+ as follows:

x̄+ = x̄− F ′(x̄)−1F (x̄) = x̄ + A−1r(x̄),

9



where the residual vector is defined for any x as r(x) = b − Ax. In practice, to take
advantage of any possible already obtained factorization of A, it is better to proceed as
follows: Compute r(x̄) = b − Ax̄, solve As = r(x̄), update the solution x̄+ = x̄ + s, and
repeat if necessary. This last procedure is what is known in the literature as iterative
refinement, and the clear connection with Newton’s method is seldom described. For the
iterative refinement process it has been established local and fast convergence as well as
stability when combined with LU factorizations [90, 158].

A topic in which Newton’s method appears in a perhaps surprising way is the use of
inverse power shifted iteration algorithms for computing an eigenvalue - eigenvector pair
(eigenpair) of a given real n× n matrix A. In the symmetric case, Peters and Wilkinson
[140] observed the connection between Newton’s method and the iterative calculation of
an eigenpair (x̂, λ̂) by considering the (n + 1)× (n + 1) nonlinear system:

(A− λI)x = 0,
1
2
(1− xT x) = 0,

where the normalization ‖x‖2 = 1 is included. Then, Newton’s method or the so-called
projected Newton’s method from an initial x0, such that ‖x0‖2 = 1, are obtained by
solving iteratively the linear system

(
A− λI −x
−xT 0

)(
∆x
∆λ

)
= −

(
(A− λI)x
1
2(1− xT x)

)
(10)

and then setting x+ = (x + ∆x)/‖x + ∆x‖2, and λ+ = λ + ∆λ. If the normalization
is not included when computing x+ then this would be Newton’s method applied to the
(n + 1) × (n + 1) nonlinear system. If the normalization is considered, then it is the
projected Newton’s method. If the normalization is not included, then local q-quadratic
convergence is immediately obtained. Surprisingly, it is established in Tapia and Whitley
[168] that if the normalization is forced at every iteration, then the intriguing local q-
order of convergence is 1 +

√
2, which represents a superquadratic order of convergence.

To observe the connection with inverse power shifted iterations, it suffices to note that the
first equation in (10) implies that (see [168] for details)

(A− λI)x+ = (∆λ)x,

i.e., the new eigenvector estimate is a scalar multiple of the one given by inverse power
shifted iterations. In the projected Newton’s method it can be established that the new
eigenvalue estimate is given by

λ+ =
xT Ax+

xtx+
.

It is well-know that the so-called Rayleigh quotient iteration uses systematically the closely
related estimate

λ+ =
xT

+Ax+

xt
+x+

,

for which the faster q-cubic convergence is observed.
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For nonsymmetric matrices, when convergence is observed, the rate of the previously
mentioned inverse iterations is in general slower than in the symmetric case. For example,
when convergence is observed, the Rayleigh quotient iteration converges q-quadratically
instead of q-cubically. Unfortunately there are examples that show that the inverse it-
erations can fail in the nonsymmetric case [9]. See [163] for a discussion on how to
combine different inverse power iterations to improve the chance of convergence. Variants
of Newton’s method have also been applied for approximating several matrix eigenpairs
simultaneously [1, 119].

Another interesting and attractive topic for which Newton’s method appeared, without
knowing it explicitly, is the problem of finding the best function approximation in the uni-
form norm, also known as the infinity norm. The classical Chebyshev alternating theorem
suggests ways for numerically computing the best uniform approximation p∗ to f ∈ C[a, b]
by functions p from a Haar system φ := {φ1, · · · , φn}. The first effective algorithm, based
on the alternating theorem, was proposed by Remez in 1934 [147]. This algorithm itera-
tively repeats two distinct steps that involve nonlinear systems of n algebraic equations,
and finding the n roots of some related polynomials. It was soon identified that Remez
algorithm had quadratic convergence to p∗. Later on, it was established under mild as-
sumptions (mainly that f is C1) that Remez method could be viewed as Newton’s method
for a certain convenient nonlinear map [38, 132]; see also [169]. For additional details on
this topic see [37], and also [143].

3 Matrix problems

In the space of square matrices, problem (1) can be written as

Given F : Cn×n → Cn×n find X∗ ∈ Cn×n such that F (X∗) = 0. (11)

Newton’s method (Algorithm 1) has also played an important role in the historical process
of the algorithm development for solving specific nonlinear matrix problems. Moreover, as
we will discuss in this section, in the space of matrices the algorithm structure is heavily
problem dependent, and as discussed before for vector problems, Newton’s method has
been reinvented several times.

Let us list some of the most important nonlinear matrix problems frequently considered
in the literature for special applications, and the associated map F .

• Matrix inverse. One of the oldest and most common nonlinear matrix problem
is to compute the inverse of a nonsingular A, that appears associated with the
solution of linear systems, and more recently associated with the art of building
suitable preconditioning strategies for iterative methods [33, 34]. For this problem,
F (X) = X−1 −A.

• Matrix p-th root. For this problem, F (X) = Xp − A where p ∈ N and p ≥ 2. The
case p = 2 has been extensively studied for several decades, see e.g. [19, 87, 91,
99, 126], whereas the general case, p > 2, has been recently considered, see e.g.
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[16, 47, 48, 100, 159]. Computing the square root (p = 2) of a given matrix is useful
for solving some boundary value problems [152] and also appears in the modelling
of flow problems [121]; and the general case (p > 2) appears associated with Markov
processes [79] among other applications. For a complete discussion on matrix p-th
roots see [92].

• Matrix sign function. The sign of a matrix extends naturally the concept of the sign
of a complex number [108]. Given a matrix A with no pure imaginary eigenvalues,
the sign of A is given by

S = sign(A) = A(A2)−1/2,

where A1/2 is the principal square root of A, that will be fully described later. See [92]
for several equivalent definitions of the matrix sign function and its properties. The
sign function is useful for solving Riccati equations, that will be discussed later. It is
also useful for solving some specialized eigenvalue problems [97]. Among the many
equivalent definitions, a practical one states that the sign of a matrix A is the square
root of the identity that commutes with A [106]. This last equivalent definition
motivates to use F (X) = X2− I, and then apply suitable iterative methods starting
from X0 = A.

• Riccati equations. The nonlinear map associated with Riccati equations is F (X) =
XA + AT X − XBBT X + CT C where A, B and C are given matrices with some
special properties, and the solution X is square and usually required to have some
special properties [112]. Riccati equations arise naturally in control problems [3, 11,
14, 43, 113, 148].

• Quadratic equations. Given the matrices A, B, and C, the quadratic matrix equation
AX2 + BX + C = 0 arises in control theory [43, 46, 94]. In this case, the nonlinear
map is F (X) = AX2 + BX + C.

• Matrix rational equations. The nonlinear map associated with matrix rational equa-
tions is

F (X) = X ±A∗X−pA−Q,

where A is a given matrix, Q is a Hermitian positive definite matrix, and p is a
positive integer. The cases p = 1 or p = 2 have received special attention in the
last few years. Matrix rational equations appear in a wide variety of applications
[60, 61, 62, 81, 102, 130, 145, 174].

• Matrix logarithm and matrix exponential. For computing the logarithm of a given
matrix A [39, 105], we consider the map F (X) = eX −A where

eX = I + X +
X2

2!
+ · · ·+ Xk

k!
+ · · ·

Similarly, for computing the exponential of a given matrix A [93, 127], we consider
the map F (X) = lnX −A.
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A key aspect that plays a crucial role in the space of matrices is the numerical stability
of the proposed methods. In general, Newton’s method is numerically stable, but in many
cases simplified versions of it, that are mathematically equivalent and computationally
appealing, are not numerically stable (i.e. a small perturbation ∆k in Xk may lead to
divergence of the sequence obtained by replacing Xk by Xk + ∆k).

It is worth mentioning that, although nonlinear problems are the natural ones associ-
ated with problem (11), there exist important applications for which the map F in (11) is
a linear map that, despite being linear, represent difficult problems to solve, and so they
deserve special attention. Moreover, quite frequently the iterative methods associated
with nonlinear problems, solve a linear matrix problem per iteration. The best known of
these linear matrix problems is the so-called Sylvester equation [162], that appears, e.g.,
in the solution of control theory problems [43]:

AX −XB = C, (12)

where X,C ∈ Cn×p and A and B are square matrices of order n and p respectively.
Note that B = −AT yields the well-known Lyapunov equation [120]. The necessary and
sufficient condition for (12) to have a unique solution is that the set of eigenvalues of A and
B have an empty intersection. This key theoretical result was originally established by
Sylvester [162]. For a full description of the theoretical properties of Sylvester equations
see [43, 95]. For solving (12) a wide variety of numerical schemes have been proposed,
ranging from direct methods that are based on the Kronecker product to iterative methods
of different types, see e.g. [8, 44, 74, 98, 103, 128] and references therein.

As we mentioned before, whenever a Newton’s method is proposed, it is possible to
define a secant scheme. Recently some authors have developed secant methods for non-
linear matrix problems that inherited, as much as possible, the features of the classical
secant methods in previous scenarios (e.g., scalar equations, nonlinear algebraic systems
of equations). A general secant method for solving (11) should be given by the following
iteration

Xk+1 = Xk −A−1
k F (Xk),

where X−1 ∈ Cn×n and X0 ∈ Cn×n are given, and Ak+1 is a suitable linear operator that
satisfies

Ak+1Sk = Yk, (13)

where Sk = Xk+1−Xk and Yk = F (Xk+1)−F (Xk). Equation (13) is known as the matrix
secant equation.

Notice that one n×n matrix is enough to satisfy the matrix secant equation (13), i.e.,
the operator Ak+1 can be obtained as a matrix of the same dimension of the step Sk and
the map-difference Yk. In that sense, there is a resemblance with the scalar case, in which
one equation is required to find one unknown. Hence, once Xk+1 has been obtained, the
matrix Ak+1 can be computed at each iteration by solving a linear system of n2 equations.
The proposed algorithm, and an important inverse variant, can be summarized as follows
[129, 131]:
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Algorithm 3 General secant method for matrix problems
1: Given X−1 ∈ Cn×n, X0 ∈ Cn×n

2: Set S−1 = X0 −X−1

3: Set Y−1 = F (X0)− F (X−1)
4: Solve A0S−1 = Y−1 . for A0

5: for k = 0, 1, · · ·until convergence do
6: Solve AkSk = −F (Xk) . for Sk

7: Set Xk+1 = Xk + Sk

8: Set Yk = F (Xk+1)− F (Xk)
9: Solve Ak+1Sk = Yk . for Ak+1

10: end for

We can generate the sequence Bk = A−1
k , instead of Ak, and obtain an inverse version

that solves only one linear system of equations per iteration:

Algorithm 4 Inverse secant method
1: Given X−1 ∈ Cn×n, X0 ∈ Cn×n

2: Set S−1 = X0 −X−1

3: Set Y−1 = F (X0)− F (X−1)
4: Solve B0Y−1 = S−1 . for B0

5: for k = 0, 1, · · ·until convergence do
6: Set Sk = −BkF (Xk)
7: Set Xk+1 = Xk + Sk

8: Set Yk = F (Xk+1)− F (Xk)
9: Solve Bk+1Yk = Sk . for Bk+1

10: end for

Solving a secant method that deals with n × n matrices is the most attractive feature
of Algorithms 3 and 4, in sharp contrast with the standard extension of quasi-Newton
methods for general Hilbert spaces, (see e.g. [75, 150]), that in this context would involve
n2 × n2 linear operators to approximate the derivative of F . Clearly, dealing with n × n
matrices for solving the related linear systems significantly reduces the computational cost
associated with the linear algebra of the algorithm.

In order to discuss some theoretical issues of the proposed general secant methods,
let us consider the standard assumptions of Theorem 2.1 but using Cn×n instead of Rn.
We begin by noticing that the operator Ak does not approximate F ′(Xk) as in previous
scenarios due to dimensional discrepancies. Indeed, F ′(Xk) ∈ Cn2×n2

and Ak ∈ Cn×n.
However, fortunately, F ′(Xk)Sk and AkSk both live in Cn×n, which turns out to be the
suitable approximation since, using the secant equation (13), we have that

Ak+1Sk = Yk = F (Xk+1)− F (Xk) = F ′(Xk)Sk + R(Sk). (14)
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Subtracting F ′(X∗)Sk in both sides of (14), and taking norms we obtain

‖Ak+1Sk − F ′(X∗)Sk‖ ≤ ‖F ′(Xk)− F ′(X∗)‖‖Sk‖+ ‖R(Sk)‖,

for any subordinate norm ‖ . ‖. Using now that F ′(X) ∈ Lipγ(N(X∗, r)), and dividing by
‖Sk‖ we have

‖Ak+1Sk − F ′(X∗)Sk‖
‖Sk‖ ≤ γ‖Ek‖+

‖R(Sk)‖
‖Sk‖ , (15)

where Ek = Xk −X∗ represents the error matrix.
Form this inequality we observe that, if convergence is attained, the left hand side

tends to zero when k goes to infinity, and so the sequence {Ak}, generated by Algorithm
2, tends to the Fréchet derivative, F ′(X∗), when they are both applied to the direction of
the step Sk.

In the next subsections we will discuss the specialized versions of Newton’s method
when applied to some of the nonlinear matrix problems listed above. We will also present
the recent development of secant methods for solving some of them.

3.1 Inverse of a matrix

Let us start by describing the application of Newton’s method for computing the inverse
of a given matrix A. As we mentioned before, for this problem the associated map F is
defined as follow

F (X) = X−1 −A. (16)

Applying the suitable Taylor’s expansion, discussed in (2), to (16) we obtain that

F (X + H) = (X + H)−1 −A = X−1 −X−1HX−1 −A + O(H2),

and so F ′(X)H = −X−1HX−1. In here, we are using the fact that if B is a nonsingular
matrix and C is any other matrix then

(B + C)−1 = B−1 −B−1CB−1 + O(‖B2‖).

Consequently, forcing the step 3 in Algorithm 1 yields

−X−1
k HkX

−1
k = −(X−1

k −A)
Hk = Xk −XkAXk,

which implies that the Newton iteration, from an initial guess X0, to find the inverse of
A is given by

Xk+1 = Xk + Hk = 2Xk −XkAXk. (17)

Notice that, the Fréchet derivative F ′ cannot be obtained explicitly, and instead it is
obtained implicitly in the product F ′(X)H, which is enough to identify the step H. The
implicit representation of F ′ is a frequent event, as we will see in the following subsections,
when applying Newton’s method to solve nonlinear matrix problems.
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The iterative method (17) has been historically known as Schulz method [153] who
first introduced it in the early 30’s. It has been established that if X0 = A∗

‖A‖2‖A∗‖2 , then
Schulz method possesses global convergence [86], it is a numerical stable scheme [160], and
it clearly has local q-quadratic convergence. Moreover, if A does not have an inverse, it
converges to the pseudoinverse of A, denoted by A† (also known as the generalized inverse)
[86, 92, 135, 160].

A secant method has also been defined to find the root of (16) [131]. For that, let us
consider the general secant method applied to (16)

Xk+1 = Xk − Sk−1(F (Xk)− F (Xk−1))−1F (Xk)

= Xk − (Xk −Xk−1)(X−1
k −X−1

k−1)
−1(X−1

k −A), (18)

that after several algebraic manipulations can be reduced as

Xk+1 = Xk−1 + Xk −Xk−1AXk, (19)

which avoids the inverse matrix calculations per iteration associated with iteration (18).
Notice the resemblance between (19) and Schulz method for solving the same problem.
The method described in (19), denoted as the secant-Schulz method, converges locally
and q-superlinearly to the inverse of A. Moreover, when A has no inverse, it converges
locally and q-superlinearly to A†. It has also been established that the secant-Schulz
method generates a stable iteration [131]. It is important to note that the q-superlinear
convergence implies the well-known Dennis-Moré condition [52, 54]

lim
k→∞

‖AkSk − F ′(X∗)Sk‖
‖Sk‖ = 0,

that establishes the most important property of the sequence {Ak} generated by the
secant-Schulz method.

We now present an experiment to illustrate the typical behavior of the secant-Schulz
iterative method when compared to the Schulz method for computing the inverse of a
given matrix. For this experiment we consider the symmetric and positive definite matrix
poisson from the Matlab gallery with n = 400. In this case, choosing X−1 = 0.5 ∗ I and
X0 = AT /‖A‖2

2 for the secant-Schulz and the same X0 for the Newton-Schulz guarantees
global convergence for both methods [131] . We report the results in Table 1, and the
semilog of the relative error in Figure 1.

Table 1: Performance of secant-Schulz and Newton-Schulz for finding the inverse of A =
gallery(’poisson’,20) when n = 400, X−1 = 0.5 ∗ I, and X0 = AT /‖A‖2

2.

Method Iter ‖Xk −X∗‖/‖X∗‖
Secant-Schulz 18 1.95e-15
Newton-Schulz 22 1.87e-15
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Figure 1: Semilog of the relative error associated with Table 1.

3.2 Square root

Let us now consider F (X) = X2 −A with A ∈ Cn×n for computing square roots of A. In
this case, F (X) = 0 might have no solutions, finitely many solutions or infinitely many
solutions. For a theoretical discussion on the existence of square roots for a given matrix,
see [89, 95]. Nevertheless, when A has no eigenvalue in the set R− = {x ∈ R : x ≤ 0},
then there exists a unique square root X∗ such that the real part of all its eigenvalues is
positive. This special solution is known as the principal square root of A, and it is denoted
by X∗ = A1/2. The principal square root can be characterized when A is diagonalizable,
i.e., if there exists W ∈ Cn×n such that

W−1AW = Λ = diag(λ1, λ2, · · ·λn),

where λ1, λ2, · · ·λn are the eigenvalues of A. Note that in that case

A = WΛW−1 = (WΛ1/2W−1)(WΛ1/2W−1),

where Λ1/2 = diag(
√

λ1,
√

λ2, · · · ,
√

λ2) and so A1/2 = WΛ1/2W−1. For details see [92].
The special interest in A1/2 is based on the role it plays for several applications, e.g.,
Markov processes [79, 101, 171], modelling of flow problems [121], and applications related
to the logarithm of a matrix [39, 105].

Newton’s method and specialized versions of it, for computing the principal square root
of a matrix, has received significant attention for many years [79, 87, 91, 99, 126, 154].
For Newton’s method, once again, we need to identify the Fréchet derivative F ′(X) using
the Taylor expansion (2)

F (X + S) = (X + S)2 −A = X2 −A + XS + SX + S2.

Hence, we obtain the following algorithm

Algorithm 5 Newton’s method for F (X) = X2 −A

1: Given X0 ∈ Cn×n

2: for k = 0, 1, · · · do
3: Solve XkSk + SkXk = −F (Xk) . For Sk

4: Xk+1 = Xk + Sk

5: end for
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Notice that the linear problem in Step 3, that needs to be solved to obtain the step Sk,
is a Sylvester equation. As we mentioned before, solving a Sylvester equation is not an
easy problem, that requires a significant amount of computational effort. Algorithm 5 is
a stable scheme that has q-quadratic convergence to A1/2 when X0 = A or X0 = mI for
m > 0 [87].

In order to avoid the solution of a Sylvester equation per iteration, several variants of
Newton’s method have emerged. In [87, 91, 92] several of these variants are described and
analyzed. Many of them assume that X0 is chosen such that X0A = AX0, which imply that
AXk = XkA and XkSk = SkXk for all k ≥ 0 [87]. As a consequence, Sk can be explicitly
obtained, from Step 3 of Algorithm 5, as Sk = 1

2 [X−1
k A−Xk] or Sk = 1

2 [AX−1
k −Xk], and

two simplified variants of Newton’s method are obtained:

(I) : Yk+1 =
1
2

[
Yk + Y −1

k A
]

(20)

(II) : Zk+1 =
1
p

[
Zk + AZ−1

k

]
. (21)

In Higham [87] it is established that if A is diagonalizable and no real eigenvalue of
A belongs to R−, then the sequence of matrices generated by (20), or (21), converges
q-quadratically to A1/2 when Y0 = Z0 = mI for m > 0. On the negative side, these
iterations are numerically unstable unless the following restrictive condition holds

1
2

∣∣∣1− (λj/λi)1/2
∣∣∣ ≤ 1 for 1 ≤ i, j,≤ n, (22)

where the λi’s are the eigenvalues of A. If A is Symmetric and Positive Definite (SPD)
the condition (22) is equivalent to κ2(A) ≤ 9 [87]. Due to this unacceptable condition the
schemes given by (20) and (21) are of no practical use.

In contrast, several additional stable variants have been proposed and analyzed for
the matrix square root problem, that are also based on Newton’s method. A complete
description of some of these variants can be found in [91]. We now present some of the
most relevant Newton-type stable options:

• Denman and Beavers [49] propose a specialized iteration for Riccati equations, that
reduced to the square root problem produces the following coupled scheme:

Yk+1 =
1
2

[
Yk + Z−1

k

]

Zk+1 =
1
2

[
Zk + Y −1

k

]
, (23)

from Y0 = A and Z0 = I. Iteration (23) is stable and has the property that Yk

converges to A1/2 and Zk converges to A−1/2, both q-quadratically [91]. The main
criticism is that it requires the inverse of two distinct matrices per iteration.

• To avoid the inverse of two matrices per iteration, Higham [91] analyzes the following
coupled variant that combines the Denman-Beaver scheme with Schulz method for
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the matrix inverse problem

Pk+1 =
1
2
Pk[3I −QkPk]

Qk+1 =
1
2
Qk[3I − PkQk], (24)

from P0 = A and Q0 = I. The coupled iteration (24) is also stable, and has
the property that Pk converges to A1/2 whereas Qk converges to A−1/2, both q-
quadratically, whenever the condition ‖diag(A− I,A− I)‖ < 1 holds [91].

• Meini [126] presents the following coupled iteration that avoids additional conditions
on the matrix A for convergence, while requiring a matrix inverse (instead of two)
per iteration

Yk+1 = −YkZ
−1
k Yk

Zk+1 = Zk + 2Yk+1, (25)

from Y0 = I − A and Z0 = 2(I + A). The coupled iteration (25) is stable and has
the property that Yk converges to 0 while Zk converges q-quadratically to 4A1/2.

• Iannazzo [99] presents and analyzes the following iteration that requires one matrix
inverse per iteration

Xk+1 = Xk + Hk

Hk+1 = −1
2
HkX

−1
k+1Hk, (26)

from X0 = A and H0 = 1
2(I − A). Iteration (26) is stable and the sequence Xk

converges q-quadratically to A1/2, without additional conditions.

On the other hand, it is possible to develop a secant method to find a square root of
a given matrix A. Applying Algorithm 3 to F (X) = X2 −A, we obtain

Xk+1 = Xk − (Xk −Xk−1)(X2
k −X2

k−1)
−1(X2

k −A), (27)

and from (27), if Xk commutes with A, we obtain a simplified version of Algorithm 3 given
by

Xk+1 = Xk − (Xk −Xk−1)(Xk −Xk−1)−1(Xk + Xk−1)−1(X2
k −A)

= (Xk + Xk−1)−1((Xk + Xk−1)Xk − (X2
k −A))

= (Xk + Xk−1)−1(Xk−1Xk + A). (28)

Notice the resemblance between (28) and (20). Both iterations are very attractive from
a computational point of view, but using similar arguments to the ones used by Higham
in [87], it can be established that (28) is an unstable iteration unless the eigenvalues of A
satisfy the condition (22). Therefore iteration (28) should be avoided.

19



Now, we will establish q-superlinear convergence of iteration (27) without assuming
commutativity. Let us assume that A is diagonalizable, that is, there exists a nonsingular
matrix V such that

V −1AV = Λ = diag(λ1, λ2, · · · , λn), (29)

where λ1, λ2, · · · , λn are the eigenvalues of A. If we define Dk = V −1XkV then we have
from (27) that

Dk+1 = Dk − V −1(Xk −Xk−1)V V −1(X2
k −X2

k−1)V V −1(X2
k −A)V

= Dk − (Dk −Dk−1)(D2
k −D2

k−1)
−1(D2

k − Λ). (30)

If we choose X−1 and X0 such that D−1 = V −1X−1V and D0 = V −1X0V are diagonal
matrices, then all successive Dk are diagonal too, and (30) can be written as

Dk+1 = Dk − (Dk + Dk−1)−1(D2
k − Λ) = (Dk + Dk−1)−1[Dk−1Dk + Λ]. (31)

Note that we can write (31) as n uncoupled scalar secant iterations for computing the
square roots of λi, for 1 ≤ i ≤ n, given by

di
k+1 =

di
kd

i
k−1 + λi

di
k−1 + di

k

, (32)

where di
k = (Dk)ii. From (32) we have that

di
k+1 ±

√
λi =

(di
k ±

√
λi)(di

k−1 ±
√

λi)
di

k−1 + di
k

, (33)

and so
di

k+1 −
√

λi

di
k+1 +

√
λi

=
(

di
k −

√
λi

di
k +

√
λi

)(
di

k−1 −
√

λi

di
k−1 +

√
λi

)
. (34)

Applying (34) recursively it follows that

di
k+1 −

√
λi

di
k+1 +

√
λi

=
(

di
0 −

√
λi

di
0 +

√
λi

)fk
(

di
−1 −

√
λi

di
−1 +

√
λi

)fk−1

, (35)

where fk+1 = fk + fk−1 for k ≥ 0, and f−1 = f0 = 1. Notice that {fk} is a Fibonacci
sequence that appears quite frequently in the analysis of secant methods. We are now
ready to establish our convergence result.

Theorem 3.1 Let A ∈ Cn×n be a diagonalizable matrix as in (29). Let us assume that A
has no nonpositive real eigenvalues, and that all iterates Xk are well defined. If X−1 = αI;
α > 0 and X0 = βI; β > 0 then the sequence {Xk} converges q-superlinearly to A1/2.
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Proof. From (31) and (32) it is enough to study the convergence of {di
k} to the square

root
√

λi for all 1 ≤ i ≤ n. Since none of the eigenvalues of A is real and nonpositive then
we can choose

√
λi such that its real part, Re(

√
λi), is positive for 1 ≤ i ≤ n. On the

other hand, since di
−1 = α > 0 and di

0 = β > 0 then for each i

∣∣∣∣∣
di
−1 −

√
λi

di
−1 +

√
λi

∣∣∣∣∣ < 1 and
∣∣∣∣
di

0 −
√

λi

di
0 +

√
λi

∣∣∣∣ < 1,

and hence, from (35)
lim

k→∞
di

k = λ
1/2
i , Re(λ1/2

i ) > 0.

Therefore,
lim

k→∞
Xk = V Λ1/2V −1 = A1/2,

and the convergence is established. Now, to prove the local q-superlinear convergence,
consider (33) that can be written as

ei
k+1 = ci

ke
i
ke

i
k−1, (36)

where ei
k = di

k − λ
1/2
i and ci

k = 1/(di
k−1 + di

k). Notice that ci
k tends to 1/(2λ

1/2
i ) when k

goes to infinity, and so it is bounded for k sufficiently large. From (36) we conclude that
each scalar secant iteration (32) converges locally and q-superlinearly to λ

1/2
i . Therefore,

equivalently, there exists a sequence {c̃i
k}, for each 1 ≤ i ≤ n, such that c̃i

k > 0 for all k,
limk→∞ c̃i

k = 0, and
|ei

k+1| ≤ c̃i
k|ei

k|. (37)

Using (37) we now obtain in the Frobenius norm

‖Dk+1 −Λ1/2‖2
F =

n∑

i=1

(ei
k+1)

2 ≤
n∑

i=1

(c̃i
k)

2(ei
k)

2 ≤ nĉ2
k

n∑

i=1

(ei
k)

2 ≤ nĉ2
k‖Dk −Λ1/2‖2

F , (38)

where ĉk = max1≤i≤n{c̃i
k}. Finally, we have that

‖Xk+1 −A1/2‖F = ‖V V −1(Xk+1 −A1/2)V V −1‖F ≤ κF (V )‖Dk+1 − Λ1/2‖F

≤ κF (V )
√

nĉk‖Dk − Λ1/2‖F ≤ κF (V )2
√

nĉk‖Xk −A1/2‖F ,

where κF (V ) is the Frobenius condition number of V . Hence, {Xk} converges locally and
q-superlinearly to A1/2. 2

Remark. If all the eigenvalues of A have positive real part, then we can choose either
X−1 = αA or X0 = βA or both, for α > 0 and β > 0, and using the same arguments as
in Theorem 3.1 guarantee the q-superlinear convergence of {Xk} to A1/2.

Now we present some numerical experiments to compare our specialized secant method
(Algorithm 3) with the DM iteration (23) and Meini’s iteration (25). We stop all considered
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algorithms when the Frobenius norm of the residual is less than 0.5D− 12, and we report
the number of required iterations (Iter), and the norm of the residual (‖F (Xk)‖F ) when the
process is stopped. The symbol (**) means that the algorithm accomplished the maximum
number of iterations. First, we consider the matrix dorr from the Matlab gallery. This
matrix is row diagonal dominant, tridiagonal, and ill-conditioned for small value of the
input argument θ. For this experiment we use n = 10 and θ = 10−7. These values were
chosen as in [126]. The results are reported in Table 2. We can observe that DB does not

Method Iter ‖F (Xk)‖F

DB ** 13.62
Meini 22 1.27e-13
Secant 10 2.08e-13

Table 2: Performance of the secant method and Newton methods for finding the square
root of A = gallery(’dorr’,n,θ) when n = 10, θ = 10−7, X−1 = I, and X0 = A/‖A‖F .

achieve convergence. Meini’s iteration converges, but it requires more than twice as many
iteration as the secant method.

Now, we consider a problem described in [126]. For this example, A is the following
Frobenius matrix

A =




−p3 −p2 −p1 −p0

1 0 0 0
0 1 0 0
0 0 1 0


 ,

where pi with 3 ≤ i ≤ 0 are the coefficients of p(x) = (x− 2)(x− 5)((x + 1)2 + ε) which is
the characteristic polynomial of A. In this case A has two complex conjugate eigenvalues
−1 ± i

√
ε. For small values of ε, these eigenvalues tend to be real and negative, and

therefore the matrix A1/2 is ill-conditioned. In this experiment we take different values of
ε and, following [126], we report the iteration at which the minimal value of ‖F (Xk)‖F is
reached. Since A has two eigenvalues with negative real part we choose X−1 = 5−10I and
X0 = 2I.

We can see in Table 3 that for all values of ε the DB iteration achieves the lowest
residual norm. On the other hand, the Meini’s iteration for ε = 10−6 and ε = 10−8 has the
worst performance and for this cases the secant method reduces considerably the residual
norm in spite of the ill-conditioning of A1/2.

3.3 Sign of a matrix

Let us now consider the application of Newton’s method for computing the sign of a
matrix. Let us recall that S = sign(A) = A(A2)−1/2, where A1/2 is the principal square
root of A. The following is a list of the most important properties of the matrix sign
function, that play a role when defining iterative schemes to compute S [92]: S2 = I, i.e.,
S−1 = S; AS = SA; and if A is SPD then S = I. Moreover, if A is a square matrix with
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ε Method Iter ‖F (Xk)‖F

DB 11 9.67e-14
10−2 Meini 10 1.09e-11

Secant 19 5.24e-11
DB 18 6.07e-12

10−4 Meini 12 5.6e-6
Secant 21 1.55e-7

DB 33 6.73e-10
10−6 Meini 13 11.28

Secant 41 8.62e-8
DB 35 2.21e-8

10−8 Meini 1 15.78
Secant 47 2.1e-3

Table 3: Performance of the secant method and Newton methods for finding the square
root of the Frobenius matrix with p(x) = (x− 2)(x− 5)((x + 1)2 + ε) for different values
of ε, n = 4, X−1 = 5−10I, and X0 = 2I.

no pure imaginary eigenvalues, and B is a block matrix defined as
[

0 A
I 0

]
, (39)

then

sign(B) =
[

0 A1/2

A−1/2 0

]
. (40)

For a proof of this last property, see [91], and for additional properties of the matrix sign
function, see [92, 108]. The previous list of properties indicates that S = sign(A) is the
square root of the identity matrix that commutes with A. Hence, each method studied
on the previous section to find the square root of a given matrix A can be used to find
S = sign(A). For example, to apply Newton’s method it suffices to start from X0 = A,
that obviously commutes with A, and apply one of the simplified Newton’s methods (20
- 21) to F (X) = X2 − I, that yields:

Xk+1 =
1
2
[Xk + X−1

k ]. (41)

Iteration (41) from X0 = A was originally proposed by Roberts [148]; and it is stable and
q-quadratically convergent to sign(A). It is referred quite frequently as Roberts method.
Once again, to avoid the inverse matrix required per iteration, this scheme can be combined
with Schulz method, to produce the so-called Newton-Schulz method:

Xk+1 =
1
2
Xk[3I −X2

k ], (42)

from X0 = A. Iteration (42) converges q-quadratically to S−1 = S, if ‖I − A2‖ < 1.
Iteration (42) is equivalent to the direct application of Newton’s method to F (X) =
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X−2 − I [129]. As we mentioned before, iteration (41) is q-quadratically convergent,
however its initial convergence behavior can be slow [88, 107]. To reduce the number of
initial iterations of (41), Higham [88] introduces a scaling in (41) replacing Xk by µkXk

with µk ∈ R+. Several ways to choose the parameter µk has been proposed, see e.g.,
[7, 28, 88]. Finally, it is worth mentioning that Kenney and Laub [106] present a family of
iterations to compute the sign of a matrix based on Padé approximation techniques [23].

Once again, we can use the fact that S = sign(A) is one of the square roots of the
identity matrix to propose a secant method (27) for computing a root of F (X) = X2 − I.
Note that, all iterates Xk commute with the identity matrix I, so it is possible to use
iteration (28) instead of (27). Finally, the secant iteration to compute the sign of A can
be written as

Xk+1 = (Xk + Xk−1)−1(Xk−1Xk + I). (43)

with X−1 = αA, X0 = βA and α, β > 0. For these initial guesses and using similar argu-
ments as in the proof of Theorem 3.1, it is possible to guarantee q-superlinear convergence
of (43) to the sign of A. Moreover, (43) is a stable iteration because all the eigenvalues of
I are equal to one, and therefore they satisfy the condition (22).

In the following experiment we compare the performance of the Newton iteration (41)
with the secant iteration (43) to compute the sign of the symmetric matrix ’orthog’ from
the Matlab gallery. For this experiment we fix n = 150 and the internal parameter θ = 2.
In our implementation we stop the algorithms when ‖F (Xk)‖F ≤ 0.5D − 14 or when 30
iterations are reached.

Table 4: Performance of secant and Newton methods for finding the sign of A =
gallery(’orthog’,n,2) when n = 150, X−1 = 0.5 ∗A, X0 = 0.5 ∗A and Y0 = A.

Method Iter ‖F (Xk)‖F

Secant method 9 4.16e-15
Newton-method 30 2.76e-14

Figure 2: Semilog of the residual associated with Table 4.
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3.4 p-th root

We now consider F (X) = Xp − A, where p ∈ N and p ≥ 2, to find a p-th root of A. As
for p = 2, there is a special interest in the principal p-th root of A that will be denoted
by X∗ = A1/p. If A has no real eigenvalue in R−, then A1/p is the unique matrix that
satisfies:

1. F (A1/p)=0.

2. Let β1, β2, · · · , βn be the eigenvalues of A1/p and Z = {z : −π/p < arg(z) < π/p}.
Then for A1/p it holds that βi ∈ Z for all i, where z is a complex number, z = a+ ib,
and arg(z) = arctan (b/a).

Several recent ideas have been proposed to compute A1/p, see e.g., [16, 47, 96, 100, 155,
156, 159]. We now describe the most relevant schemes related to Newton’s method. The
general form of this method for computing a p-th root of A is Xk+1 = Xk + Sk where Sk

solves
p−1∑

i=0

Xp−1−i
k SkX

i
k = A−Xp

k . (44)

Equation (44) represents the step 3 of Algorithms 1, and it was obtained using the Taylor
expansion of F (X) = Xp−A. This equation is a generalized Sylvester equation in the ma-
trix variable Sk. To avoid the significant computational cost of solving (44) per iteration,
several simplified versions of Newton’s method have been considered for solving the matrix
p-root problem. The standard simplified Newton iteration can be obtained assuming that
A commutes with X0, which in turn implies that AXk = XkA and SkXk = XkSk for all
k. Under this assumption Newton’s method can be written as

Xk+1 =
1
p
[(p− 1)Xk + X

(1−p)
k A].

This simplified iteration converges to the unique positive definite root of A when A is
SPD [96, 100], but in the general case convergence to A1/p cannot be guaranteed [159].
Unfortunately, in general it is numerically unstable [159]. There are some other simplified
iterations based on the commutativity of A with X0 that are numerically stable, see e.g.
[47].

Bini et al. [16] present a Newton-type method to compute A−1/p instead of A1/p,
which is also q-quadratically convergent and numerically stable. This specialized method
requires a trustable scheme for computing A1/2, and so it can be applied only for p > 2.
Similarly, Iannazzo [100] presents two different Newton-type iterations to compute A1/p,
and once again they are q-quadratically convergent and numerically stable, but they also
require a trustable scheme for computing A1/2.

3.5 Riccati equations

Let us now consider

F (X) = XA + AT X −XBBT X + CT C, (45)
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with A ∈ Rn×n, B ∈ Rn×r, C ∈ Rq×n, and r, q ¿ n. The equation F (X) = 0 is known
as Continuous-time Algebraic Riccati Equation (CARE) and plays an important role in
control theory problems [43] and dynamical systems [3], among others.

Several applications require a symmetric positive semidefinite stabilizing solution of
(45). The solution X∗ is stabilizing if the matrix A−BBT X∗ is stable, i.e, if its eigenvalues
lie in the open left half plane, see e.g., [43, 112] for details. Since the n × n solution X∗
is symmetric, it is customary to represent it in a factored form X∗ = Y Y T . There is an
extensive literature concerning numerical methods for the solution of CARE; e.g., [43, 112]
and references therein. However it is a common approach to use Newton’s method to find
a solution of (45), e.g., [12, 13, 80, 109, 136, 151]. As usual, the general Newton’s iteration
is given by Xk+1 = Xk − F ′(Xk)−1F (Xk), that after the standard Taylor expansion can
be written as

Algorithm 6 Newton’s method for CARE
1: Given X0 ∈ Rn×n such that X0 = XT

0 and A−BBT X0 is stable.
2: for k = 0, 1, · · · until convergence do
3: Set Ak = A−BBT Xk

4: Solve AT
k Xk+1 + Xk+1Ak = −CT QC −XkBBT Xk . for Xk+1

5: end for

Algorithm 6 has been known in the literature as the Kleinman iteration for CARE [109].
Notice that the Lyapunov equation (step 4) must be solved at every iteration. Recently
for large scale problems the Kleinman iteration is combined with Alternating Direction
Implicit (ADI) iterations for solving the Lyapunov equations [13, 66]. For another ap-
proach suitable for small and medium size problems which is based on the sign function,
see Byers [28].

A quasi-Newton scheme has also been developed for solving CARE, that obtains a
reduction in the computational cost of the linear algebra involved [136].

3.6 Rational equations

We consider the following rational matrix equation

X ±A∗X−pA = Q, (46)

where A is a nonsingular n× n matrix, Q is an n× n Hermitian positive definite matrix,
p is a positive integer and A∗ represents the conjugate transpose of A. Equation (46)
requires maximal (minimal) Hermitian positive definite solutions. A maximal solution of
(46) denoted by X+ satisfies that X+ > X for any Hermitian solution X, where A > B
(A ≥ B) means that A−B is a positive definite (semidefinite) matrix, which is the well-
known Löwner ordering for Hermitian matrices. A minimal solution X− can be defined
similarly. For additional comments concerning the existence of solutions for (46) see
[62, 63, 174]. Rational equations appear in the analysis of stationary Gaussian reciprocal
processes over a finite interval [67], in the field of optimal control theory [62], and it is
related to an algebraic Riccati equation of the type arising in Kalman filter theory [114].
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When p = 1 a Newton’s method has been already developed, and after a standard Taylor
expansion and simple manipulations it can be written as

Xk+1 ± L∗kXk+1Lk = Q± 2L∗kA, (47)

where Lk = X−1
k A. Notice that at every iteration of (47) the inverse of a matrix needs to

be computed, and a discrete Sylvester equation (also known as Stein equation) needs to
be solved for Xk+1. From suitable initial guesses and mild assumptions the q-quadratic
convergence of (47) has been established [81].

To avoid the inverse per iteration in (47), when p = 1, Q = I and using the plus sign,
a simplified variant based on the Newton-Schulz scheme (17) has been recently proposed
and analyzed [130]. This simplified iteration is given by

Xk+1 = 2Xk −XkA
−∗(I −Xk)A−1Xk. (48)

The method indicated by (48) is clearly inexpensive. Notice that it only requires to
compute A−1 at the beginning of the process. From X0 = AA∗, iteration (48) converges
q-linearly to the minimal solution of (46) [130]. For different values of p, there are some
other iterative schemes that posses q-linear convergence to extremal solutions of (46) which
are not based on Newton’s method but instead they are based on fixed points iterations
[60, 61, 81, 102, 144, 174].

4 Conclusions

Newton’s method has been omnipresent in the development of applied mathematics and
scientific computing; and whenever a Newton’s method is applicable to a general nonlinear
problem a suitable secant method can also be obtained for the same problem. In this work
we present a condensed review of this longstanding relationship in different and sometimes
unexpected scenarios. In our presentation, we also emphasize that Newton’s method has
been rediscovered several times through history for solving specialized vector and matrix
problems.

In the space of matrices we discuss and further analyze a recent interpretation of the
classical secant method. In the special case of computing the inverse, the square root,
and the sign of a given matrix, we fully analyze the specialized versions that emerge from
this interpretation of the secant method, and compare their practical performance with
the best available specialized Newton’s method. Our preliminary numerical experiments
show the expected q-superlinear convergence and indicate that, for solving nonlinear ma-
trix problems, these secant schemes have interesting properties that remain to be fully
understood.
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[27] C. G. Broyden, J. E. Dennis and J. J. Moré [1973], On the local and superlinear convergence of
quasi-Newton methods, J. Inst. Math. Appl., 12, pp. 223–245.

[28] R. Byers [1987], Solving the algebraic Riccati equation with the matrix sign function, Linear Algebra
Appl., 85, pp. 267–279.

[29] R. H. Byrd, R. A. Tapia and Y. Zhang [1992], An SQP augmented Lagrangian BFGS algorithm for
constrained optimization, SIAM J. Optim., 2, pp. 210–241.
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