
Universidad Central de Venezuela
Facultad de Ciencias

Escuela de Computación

Lecturas en Ciencias de la Computación
ISSN 1316-6239

RubySimF: A Discrete Event

Simulation Framework
in Ruby

Prof. Eliezer Correa
Prof. Sergio Rivas

RT 2010-01

Centro de Investigación de Operaciones y Modelos Matemáticos (CIOMMA)
Caracas, Enero 2010.

1

RubySimF: A Discrete Event Simulation Framework

in Ruby
Prof. Eliezer Correa (elcorrea@gmail.com)

Prof. Sergio Rivas (sergiorivas@gmail.com)

Universidad Central de Venezuela

Ciudad Universitaria, Los Chaguaramos

Caracas, Venezuela.

ABSTRACT

RubySimF is an open source simulation framework based on the Ruby language for customizing simulations using

a process interaction approach. In this work we discuss the benefits of using a paradigm with dynamic languages

such as our Ruby based framework, allowing for changes at execution time, block handling, and compatibility

with various general purpose libraries. For handling simulation time between discrete events we propose implicit

interoperable execution threads, furthermore we use classes for encapsulating behavior of the complex

components in a system and also tools for input modeling and output analysis. RubySimF is suited for general-

purpose simulation of complex systems and was designed with emphasis on usability, however it can be extended

or customized with little coding effort. This work is in progress and we are working on new classes to support

performance evaluation of computational systems.

General Terms

Simulation Frameworks

Keywords

Discrete Event Simulation, Ruby, Simulation Handling Time

2

1. INTRODUCTION
Simulation is a tool used to evaluate different scenarios of a situation and their possible outcome in a practical and

economic manner. In the simulations, time management can be complex or inefficient. This work proposes a

framework that allows writing simulations with little codification effort and easy usage. This framework

RubySimF is based on the Ruby programming language, which is increasingly used for computational

developments in different contexts.

The advantages of a framework based on the Ruby programming language, are to use the dynamic features of the

language, allowing a legible and cleaner code. The proposed framework RubySimF is a tool for writing simulation

code in short time as high-level simulation packages and also allows writing details of the simulation as low-level

simulation libraries. RubySimF uses the best of Ruby's features at each level of abstraction.

3

2. DISCRETE EVENT SIMULATION
Given a situation where there is the need to advance the time as a variable during simulation. There are different

strategies for advancing the clock (to emulate the passage of time), and simulate the dynamics of the entities in

the system along the advance of time. Discrete event simulation is an strategy to advance the simulation clock

(time handling) of an efficient manner.

2.1 Time handling
A strategy based on reality is to advance the simulation clock according to the real-time clock. Although this

strategy may be accelerated and run the simulation proportionally in time, it represents an expense in unnecessary

resources and therefore it is a very inefficient strategy.

Another strategy is to advance the simulation clock in fixed time intervals and executing the actions pertaining to

activation in a particular interval. This simple strategy can be inadequate, as by advancing the simulation clock

there may not exist any action that changes the state of the system at that time and therefore the simulation would

use many resources such as memory or processing units, that are not needed.

Besides the before mentioned strategies, a more efficient strategy is advancing the simulation clock at exactly

those moments of time where the system is scheduled to change. The discrete event-based simulation can advance

over time in steps, avoiding delays for unnecessary executions.

The discrete event simulation is based on modeling the system changes at separate points in time [1]. System state

changes at certain points of time, and the logic of the simulation only concentrates on observing those points

representing the situation to model.

Simulation theory proposes a general control algorithm to handle the course of the simulation clock. Events are

defined as instants in time where the system changes; this algorithm processes the events in chronological order

and manages a list of events waiting to be executed. Simulation algorithm advances the simulation clock in a

coherent form with the system to simulate [5].

2.2 Process Interaction Approach
The simulation based on event scheduling requires the user to handle the concepts of events and time scheduling

very well. In fact, the developer must be aware of each type of event that exists in the situation to be represented.

The programmer must also know which events generate other events; this level of detail can be very complex in a

large system so high-level alternatives are needed for creating a simulation program [4].

Today, developers are more focused at the system and the interaction between entities, rather that at the events.

The current programming languages and the object-oriented approach tend to solve computational problems in

4

order to simulate a level of abstraction where the programmer defines a high-level entities and their interaction

[7].

Process-based simulation or also the process interaction approach hides the low-level events in discrete event

simulations to focus on the processes and their interaction [2].

Aspects to take into account with this approach are:

1. Simulation consists of the interaction of entities in the system.

2. In the simulation should identify the processes and activities that define the system behavior.

3. There are not explicitly events in the code.

A process represents a set of activities, however, in discrete event simulation a process is a sequential list of

events and time delays that include demands on system's resources [3] (see Figure 1).

Figure 1: A Process example

Delays represent the time duration of an activity or to be waiting for a condition.

A language, library, or framework based on interaction of processes should allow a way to specify which are the

processes, and also the activities that define it.

This approach hides the handling of events to internal layers of development, and under this approach it should be

possible to specify processes and implicit events should be created automatically.

5

3. RUBY PROGRAMMING LANGUAGE
The Ruby programming language is a full object-oriented, general-purpose and open source licensed

programming language focused on simplicity that was initially created in the 90s.

Ruby has lately gained much popularity by taking advantages of its dynamism, and many developers prefer Ruby

language as it allows focusing their code on human behavior rather than machine's. This approach allows writing

cleaner, more elegant and natural code.

In relation to the implementation and extensibility Ruby is multiplatform, and can run in interpreted or compiled;

additionally, there are now versions of Ruby in other languages such as JRuby which is an implementation of

Ruby written in the Java, therefore Ruby programs can run in a Java environment and use Java libraries from Ruby

programs. Furthermore, Ruby has tools for integration and extension of other languages like C and Python.

Ruby is a dynamic language with several mechanisms for changing the behavior of an object at runtime.

Among the features of dynamism as an advantage for simulation we can highlight the following: It is reflexive,

presence of the block concept allowing a method to change behavior, handling of messages instead of calls, the

method_missing method, code evaluation, open classes, allows mixing of code, and has hooks methods. All these

mechanisms allow changing: a method, the structure of a class, or the inheritance hierarchy at runtime, among

others. The described features are helpful to simulate structural changes and represent evolution of systems.

Dynamism may seem dangerous but today is used as an advantage to generate code at runtime and write less

code.

6

4. RUBYSIMF
RubySimF (Ruby Simulation Framework) is a framework written in the programming language Ruby that takes

advantage of the dynamic features of Ruby allowing the coding of simulation in an elegant, clean and simple way.

RubySimF use these features to help to developers to make simulations based on the interaction process approach

and provides an API for extending behavior in a simulation, e.g. random values generation, input modeling,

output analysis among others.

Subsequently some of the features of RubySimF are shown, highlighting some of the advantages of its use as a

simulation framework.

4.1 Asynchronous calls & implicit processes

RubySimF handles advancing the simulation clock internally by a discrete event-based simulation. The level of

abstraction in the framework is the process interaction approach.

In contrast to other tools, in RubySimF processes are not explicit, neither the specification of a process is intrusive

in the structure of an application domain; some simulation languages force inheritance of certain classes to work

with the process interaction approach.

RubySimF bases simulated process activations on an instruction (async_run) that receives a block of code. When

async_run is executed then a new process is created with the code specified within the block, and simultaneously

a new event is scheduled in the list of events pending to activate this process later.

RubySimF takes advantage of Ruby to write asynchronous calls in a single block and at runtime to create and keep

control of the blocks giving a simple and elegant form for invoking an implicit process.

This problem of multiple instances (processes) running simultaneously in a simulation is solved by asynchronous

calls and the framework has control of the simulation clock.

For each asynchronous call the framework creates a new internal process that inherits from a thread Ruby class

and manages the execution control of that thread, as well as their status changes.

For example the process is blocked or unblocked as appropriate, and it is all done internally. See Figure 2.

Figure 2: Asynchrony Call

7

4.2 Entities Prebuilt
For less effort in the coding time, the framework provides pre-built classes that model the behavior of complex

entities in a simulation domain.

Resources are entities that are used as servers with queues for a waiting line situation. Resources get a predefined

capacity at the moment of initialization and can later be changed. The resource blocks the process that tries to use

it when the capacity is full, inserts the process in a waiting queue; when the resource it is released the next process

if any, of the queue is unblocked.

Resources are entities that model a ticket window, or simply a service with a waiting queue.

Currently we are researching which should be the general complex entities to be provided by the framework and

how to add modules to extend the framework with a set of entities solving complex problems in a specific

domain.

4.3 Random Generates
The Ruby language does not include an official library for generating values of random variables for known

probability distributions. The framework also provides methods for the generation of random values with a

binomial, negative binomial, Bernoulli, geometric, triangular, discrete-uniform, continuous-uniform, hyper-

geometric, normal, exponential, Poisson, log-normal probability distributions among others.

To generate the values we used convolution, inversed cumulated density function, direct and indirect methods; all

these methods are based on a pseudorandom [6] number generator provided by the framework because the

random method of the Ruby language is not enough tested.

Using these functions the programmer also prevents redoing the necessary code needed to generate the random

numbers involved in a simulation.

4.4 Statistic Collectors
For output analysis it is necessary to collect statistics. RubySimF provides the monitors, which are entities

responsible for keeping observations at various points in time during an execution, at the discretion of the

programmer.

At the end of an execution, after gathering or monitoring values it can be inquired about the observations

statistical average, standard deviation, sum of observations, time-weighted average, minimum, maximum.

4.5 Templates & Patterns

In order to create simulations programs, RubySimF produces self-generated programs by using the "generate"

command, which provide skeletons for simple models of simulation.

8

The generated templates are documented and can be modified, as the intention is to provide a base for larger

programs and complex simulation models.

For the construction of this framework several design pattern were used such as Singleton, Strategy, Template

Method, and Decorator among others. Design patterns allow for an elegant, known and reusable solution for

creating frameworks.

4.6 Input & Output in Simulation
For the analysis of situations, the user usually requires a previous work consisting of structuring, classification

and preparation of data to support the model, likewise, there is a subsequent work in a simulation in analyzing the

results to interpret the behavior of the system under a given situation. For both cases, the framework provides

useful tools.

4.6.1 Input Modeling

For input modeling RubySimF provides templates for input analyzers using generators. Furthermore, test

algorithms can be applied to recognize known distributions in the input. This feature is in progress.

4.6.2 Output Analysis

Regarding output analysis, RubySimF integrates tools such as plotters with statistical collectors allowing create

histograms, scattering plots, among others. There are also available methods for estimating confidence intervals as

an analytical tool with the simulation results. This feature is in progress.

9

5. CONCLUSION
RubySimF is a simulation tool for writing simulation code with a simple to use and elegant form. It takes

advantage of the dynamic features of Ruby allowing writing simulations with less code. Specifying implicitly the

processes allows writing a non-intrusive code in the problem domain and enhances a clean design and

codification. Use of threads to model a process gives control of block or unblocks an activity with events that

activate and inactivate the process.

RubySimF is still under construction, and in its current state provides pre-built entities for extensions. These

entities are under study seeking to provide generally used entities for simulations environments. The extensions

should add new pre-build entities specified for a particular context. The framework also provides tools for model

input and output analysis, with the goal of being an integral tool for simulation. In addition, RubySimF provides a

library to perform the generation of random values with common probability distributions.

10

6. REFERENCES
[1] Law A. Simulation Modeling & Analysis. Mc Graw Hill. 2007.

[2] Banks J. Discrete Event System Simulation. Prentice Hall. 2005.

[3] Tyszer, J. Object-oriented computer simulation of discrete-event systems. Kluwer Academic Publishers. 1999.

[4] Pooch U, Wall J. Discrete event simulation: a practical approach. CRC Press Inc. 1993.

[5] Rivas S. Estrategias del manejo del tiempo en simulaciones dinámicas. Notas de Docencia ND 2010-01.

Escuela de Computación U.C.V. 2009.

[6] Dagpunar J. Principles of Random Variate Generation. Oxford University Press 1988.

[7] Law A. An introduction to Simulation using SIMSCRIPT II.5. C.A.C.I. 1984.

