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Abstract

The problem of finding the p-th root of a matrix has received special attention in
the last few years. Standard approaches for this problem include and combine some
variations of Newton’s method, which in turn involve matrix factorizations that, in
general, are not suitable for large-scale problems. Motivated by some recently de-
veloped low-cost iterative schemes for nonlinear problems, we consider and analyze
specialized residual methods that only require a few matrix-matrix products per iter-
ation, and hence are suitable for the large-scale case. As a by-product we also discuss
the advantages of residual methods for general nonlinear problems whose variables
separate. Preliminary and encouraging numerical results are presented for computing
p-th roots of large-scale symmetric and positive definite matrices, for different values
of p.

Key words: Nonlinear matrix equations, p-th roots of matrices, residual methods.

1 Introduction

Consider the nonlinear matrix equation

F (X) = Xp −A, (1)

where A ∈ IRn×n is symmetric and positive definite (SPD) and p ≥ 2 is a positive integer.
A solution X ∈ IRn×n of (1) is called a matrix p-th root of A. In this work we are
interested in the SPD solution of (1). This problem appears for instance as a useful
tool in the calculation of matrix logarithms [6, 14], and also for computing the matrix
sector function [22, 26]. It also appears in the solution of Markov processes associated
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with financial mathematics [9]. The problem of computing the square root (p = 2) has
received significant attention [4, 5, 10, 11, 12, 17, 18, 23], and the general case has also
been considered [2, 13, 24, 25, 26, 27]. Motivated by the recently developed low-cost
residual schemes [15, 16] for nonlinear problems, and by the preliminary numerical results
presented in [21], we present and analyze specialized residual methods for solving (1).

The general residual algorithm (see [15, 16, 21]) for solving F (X) = 0, where F is
any nonlinear map from the space of real square matrices into the space of real square
matrices, can be written as:

Algorithm 1 General residual algorithm
1: Let X0 ∈ IRn×n, α0 ∈ IR, α0 6= 0
2: for k = 0, 1, · · · do
3: Xk+1 = Xk − (1/αk)F (Xk)
4: Sk = Xk+1 −Xk

5: Yk = F (Xk+1)− F (Xk)
6: αk+1 = 〈Sk, Yk〉/〈Sk, Sk〉 . 〈A,B〉 = trace(ATB)
7: end for

Notice that the search direction −F (Xk), in Algorithm 1, makes it a derivative free
method. Notice also that the step length λk = (1/αk) is based on the nonmonotone
spectral step length [1, 7, 19] (also known as the Barzilai-Borwein step length), that
requires inexpensive calculations. For a complete review on the spectral step length see
[3] and references therein. To study the convergence of Algorithm 1, for solving (1), we
first present in Section 2 a more general analysis for problems whose variables separate.
This approach will allow us to study some other related problems in Section 4. In Section
3 we present a convergence analysis of our specialized residual scheme for computing the
matrix p-th root. In Section 5 we describe some preliminary numerical experiments, and
in Section 6 we close with some final remarks.

2 A general analysis for problems whose variables separate

Consider the nonlinear system of equations whose variables separate

F (x1, x2, . . . , xn) ≡ (f1(x1), f2(x2), . . . , fn(xn))T = 0, (2)

where F : IRn → IRn and fi : IR → IR for i = 1, . . . , n. Let us assume that F is
continuously differentiable in a neighborhood of r ∈ IRn for which F (r) = 0, i.e., r solves
(2). Let us also assume that f

′
i (ri) > 0 for all i. In Section 3 we will see that this last

assumption holds when solving (1).
If we apply Algorithm 1 for solving problem (2), where vectors in IRn are interpreted

as n× 1 matrices, then the sequence of iterates can be viewed as n independent sequences
where each sequence is related to one and only one variable, and all of them use the same
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step length, as follows:
x1(k+1) = x1(k) − 1

αk
f1(x1(k))

x2(k+1) = x2(k) − 1
αk
f2(x2(k))

...
xn(k+1) = xn(k) − 1

αk
fn(xn(k)).

(3)

The inverse of the common step length, αk at Step 6 in Algorithm 1, that will be also
denoted as the slope of the iteration, can be obtained as

αk+1 =

∑n
i=1(xi(k+1) − xi(k))(fi(xi(k+1))− fi(xi(k)))∑n

i=1(xi(k+1) − xi(k))2
. (4)

Multiplying and dividing each term in the numerator by xi(k+1) − xi(k), we have that

αk+1 =

∑n
i=1(xi(k+1) − xi(k))2

fi(xi(k+1))−fi(xi(k))

xi(k+1)−xi(k)∑n
i=1(xi(k+1) − xi(k))2

. (5)

Let us define

σi(k+1) =
fi(xi(k+1))− fi(xi(k))

xi(k+1) − xi(k)
. (6)

It is worth noticing that σi(k+1) coincides with the slope used by the classical secant
method for one variable when solving each one of the fi(xi) = 0 equations separately.
Therefore, if we start sufficiently close to the solution vector r, then for each i

lim
k→∞

σi(k) = f
′
i (ri) > 0. (7)

From the formulations in Algorithm 1 we have

xi(k+1) − xi(k) = − 1
αk
fi(xi(k)). (8)

Using now (8) and substituting fi(xi(k+1))−fi(xi(k))

xi(k+1)−xi(k)
by σi(k+1) in (5) we obtain

αk+1 = σ1(k+1)

f2
1 (x1(k))∑n

i=1 f
2
i (xi(k))

+σ2(k+1)

f2
2 (x2(k))∑n

i=1 f
2
i (xi(k))

+ · · ·+σn(k+1)

f2
n(xn(k))∑n

i=1 f
2
i (xi(k))

. (9)

The following interpretation of (9) is of value: The inverse of the common step length,
αk+1, is the weighted average of the individual slopes (secant type) of each one of the
one-variable equations, and the weights of each slope is given by the square of the as-
sociated residual, f2

i (xi(k)). Hence, at each iteration of Algorithm 1, the common slope
approximates the individual slope associated with the equation with the largest residual.
Moreover, from (9) the following useful inequality is also obtained

min(σi(k)) < αk < max(σi(k)). (10)
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Another useful result, that will be needed for our analysis, relates two consecutive residuals
for each independent equation. First, let us denote

Ri,k = fi(xi,k). (11)

We can now write (6) as follows

Ri,k+1 −Ri,k = σi(k+1)(xi(k+1) − xi(k)).

Using (8) and (11) we now substitute xi(k+1) − xi(k) by − 1
αk
Ri,k and we obtain

Ri,k+1 −Ri,k = −
σi(k+1)

αk
Ri,k,

that in turn implies
Ri,k+1 = (1−

σi(k+1)

αk
)Ri,k. (12)

We are now ready to present our convergence analysis. The following line of arguments
resembles the one presented in [19] for minimizing convex quadratics. However, since we
are solving a different problem, the differences are fundamental. Let us recall that we
are assuming that f

′
i (ri) > 0 for all i. Hence, by continuity the slope of each equation

is also positive near the solution vector r ∈ IRn. Let us also assume, without any loss of
generality, that the slopes are ordered as follows:

0 < σ1(k) < σ2(k) < · · · < σn(k).

The analysis for problems in which all the slopes are negative is identical. Our first result
is concerned with the convergence behavior of the residual associated with the equation
with the smallest slope.

Lemma 1 If Algorithm 1 is applied for solving (2), and the initial guess is sufficiently
close to the solution vector r, then the sequence {f1(x1(k))} converges to zero when k tends
to infinity.

Proof. From (12) it follows for the first one-variable equation that

R1,k+1 = (1−
σ1(k+1)

αk
)R1,k. (13)

Using (7) and the well-known local properties of the secant method for one variable, there
exists ξ, 0 < ξ < 1, such that

σ1,k+1 = bkσ1,k, 1− ξ < bk < 1 + ξ,

and using (10) there exists ζ > 0 such that

0 < ζ <
σ1,k

σn,k
< 1.
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Combining all these previous inequalities we obtain

|1−
σ1(k+1)

αk
| < max(ξ, |1− (1− ξ)ζ|, |1− (1 + ξ)ζ|) < 1, ∀k,

which implies that the sequence {f1(x1(k))} converges to zero. 2

Lemma 2 If limk→∞R1,k = 0, limk→∞R2,k = 0, · · · , and limk→∞Rl,k = 0, then

lim inf
k→∞

Rl+1,k = 0.

Proof. Let us suppose by way of contradiction that there exists ε > 0 such that, for all k,

R2
l+1,k > ε. (14)

Since we are sufficiently close to the solution, using (7), there exists ξ such that

σi,k+1 = bkσi,k, 1− ξ < bk < 1 + ξ, 0 < ξ <
2
5
. (15)

From (9) and (11) the common slope can be written as

αk+1 =
σ1(k+1)R

2
1,k + σ2(k+1)R

2
2,k + · · ·+ σn(k+1)R

2
n,k∑n

i=1R
2
i,k

. (16)

Since the sequences R2
1,k, . . . , R

2
l,k converge to zero, then there exists k̂ sufficiently large

such that
l∑

i=1

R2
i,k ≤

1
4
ε, for all k ≥ k̂. (17)

Hence, from (9) and (17), it follows that for all k ≥ k̂

σl+1(k+1)

∑n
i=l+1R

2
i,k

1
4ε+

∑n
i=l+1R

2
i,k

≤ α1(k+1) ≤ σn,k+1. (18)

Since
n∑

i=l+1

R2
i,k ≥ R2

l+1,k ≥ ε,

and using (18), we have that

4
5
σl+1(k) ≤ αk+1 ≤ σn,k+1 for all k ≥ k̂. (19)

Combining now (19) and (15) it follows that

|1−
σl+1,k+1

αk
| = |1−

bkσl+1,k

αk
| ≤ max(

3
4
, 1− bk

σl+1,k

σn,k
) for all k ≥ k̂ + 1.
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Sufficiently close to the solution it holds that 0 < ζ <
σl+1,k

σn,k
< 1, and so

|1−
σl+1,k+1

αk
| ≤ max(

3
4
, 1− 2

5
ζ) for all k ≥ k̂ + 1.

Finally using (12) we obtain

|Rl+1,k+1| = |(1−
σl(k+1)

αk
)||Rl+1,k| ≤ ĉ|Rl+1,k|,

where
ĉ = max(

3
4
, 1− 2

5
ζ) < 1, (20)

which contradicts (14), and hence the result holds. 2

Theorem 1 Consider Algorithm 1 for solving problem (2). Let us assume that F is
continuously differentiable in a neighborhood of r ∈ IRn for which F (r) = 0 and f ′i(ri) > 0,
for 1 ≤ i ≤ n. If we start sufficiently close to r then the sequence {xi(k)} converges to r.

Proof. Let us assume, without any loss of generality, that α1,k ≤ α2,k ≤ · · · ≤ αn,k. We
prove that Rp,k converges to zero for 1 ≤ p ≤ n by induction on p. From Lemma 1 we
have that limk→∞R1,k = 0. Consider an integer p from the interval 2 ≤ p ≤ n, and let us
assume that R1,k, · · · , Rp−1,k converge to zero. Therefore, for any given ε > 0 there exists
k̂ sufficiently large such that

p−1∑
i=1

R2
i,k ≤

1
4
ε, for all k ≥ k̂. (21)

From (16) and (21) we obtain

σp,k+1
∑n

i=pR
2
i,k

1
4ε+

∑n
i=pR

2
i,k

≤ αk+1 ≤ σn,k+1, (22)

for all k ≥ k̂. Using now Lemma 2 there exists kp ≥ k̂ such that

R2
p,kp

< ε.

Now, let us say that k0 > kp is any integer for which R2
p,k0−1 < ε and R2

p,k0
≥ ε. Clearly,

n∑
i=p

R2
i,k ≥ R2

p,k ≥ ε for k0 ≤ k ≤ j − 1, (23)

where j is the first integer greater than k0 for which R2
p,j < ε. Hence, from (22) and (23),

we have that
4
5
σp,k+1 ≤ αk+1 ≤ σn,k for k0 ≤ k ≤ j − 1. (24)

6



Using now (24) and equation (12) applied to p, it follows that

|Rp,k+2| ≤ ĉ|Rp,k+1| for k0 ≤ k ≤ j − 1,

where ĉ is the constant given by (20) that satisfies ĉ < 1.
Finally using (10), (12), and the fact that 0 < ζ <

σ1,k

σn,k
< 1, the following bound can

be obtained
|Rp,k0+1| ≤ (

1
ζ
− 1)2|Rp,k0−1|,

which in turn implies

(Rp,k0+1)2 ≤ (
1
ζ
− 1)4(Rp,k0−1)2 ≤ (

1
ζ
− 1)4ε,

for all k0 +1 ≤ k ≤ j+1. From the conditions on k0 and j, it follows that R2
p,k is bounded

from above by a multiple of ε. Since ε > 0 can be chosen arbitrarily small, we conclude
that limk→∞Rp,k = 0, which completes the proof. 2

3 Analysis for computing the matrix p-th root

We will present an analysis of the residual algorithm for computing the SPD matrix
root of a given SPD matrix A. First, we will establish that Algorithm 1 applied to
Xp−A = 0, from an initial guess X0 that commutes with A, generates the same sequences
{αk} and {Rk} that it generates from Z0 = QTX0Q when applied to the simplified problem
Zp −Λ = 0, where Z and Λ = QTAQ are both diagonal matrices. In here, Q is a suitable
orthogonal matrix. For the sake of clarity and completeness let us now present both
algorithms.

Algorithm 2 Residual algorithm for Xp −A = 0
1: Let X0 ∈ IRn×n commuting with A,α0 ∈ IR, α0 6= 0
2: for k = 0, 1, · · · do
3: Xk+1 = Xk − (1/αk)(X

p
k −A)

4: Sk = Xk+1 −Xk

5: Yk = Xp
k+1 −X

p
k

6: αk+1 = 〈Sk, Yk〉/〈Sk, Sk〉
7: end for
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Algorithm 3 Residual algorithm for Zp − Λ = 0
1: Let Z0 = QTX0Q ∈ IRn×n, σ0 ∈ IR, σ0 6= 0
2: for k = 0, 1, · · · do
3: Zk+1 = Zk − (1/σk)(Z

p
k − Λ)

4: Ŝk = Zk+1 − Zk
5: Ŷk = Zpk+1 − Z

p
k

6: σk+1 = 〈Ŝk, Ŷk〉/〈Ŝk, Ŝk〉
7: end for

We are now ready to establish our main convergence result.

Theorem 2 If α0 = σ0, and X0 = QZ0Q
T where Z0 is a diagonal matrix, then αk = σk

and Xk = QZkQ
T , for all k, and hence the sequence {Xk} generated by Algorithm 2

converges to Xr if and only if the sequence {Zk} generated by Algorithm 3 converges to
Zr, where Zr = QTXrQ.

Proof. Let us show by induction on k that αk = σk and Xk = QZkQ
T for all k. It clearly

holds for k = 0. Let us assume that αk = σk and Xk = QZkQ
T . Therefore,

Xk+1 = QZkQ
T − 1

σk
(QZpkQ

T −QΛQT ) = Q(Zk −
1
σk

(Zpk − Λ))QT = QZk+1Q
T .

Since trace(AB) = trace(BA), QTQ = I, Sk = QŜkQ
T and Yk = QŶkQ

T , then

αk+1 =
trace(STk Yk)
trace(STk Sk)

=
trace(QŜTk Q

TQŶkQ
T )

trace(QŜTk Q
TQŜkQT )

=
trace(ŜTk Ŷk)

trace(ŜTk Ŝk)
= σk+1.

Consequently for all k
‖Xk −Xr‖F = ‖Zk − Zr‖F , (25)

where Xr is the limit of the sequence generated by Algorithm 2, and Zr s the limit of the se-
quence generated by Algorithm 3. In here, for any square matrix A, ‖A‖2F = trace(ATA).
Finally, from (25), the result holds. 2

Another consequence of the similarity between the matrices Xk and Zk is the follow-
ing: If the solution of the original problem, Xr, is SPD then the solution of the simplified
problem, Zr, is also SPD. Hence, Zr(i, i) > 0 for all i = 1 · · ·n, and so the derivative of
each independent simplified equation is also positive, i. e., pZr(i, i)p−1 > 0 for i = 1 · · ·n.
Our next result establishes the local convergence of Algorithm 2 for finding the matrix
p-th root.

Theorem 3 Let A be a given SPD matrix. If X0 is chosen sufficiently close to Xr, the
SPD solution of Xp −A = 0, then the sequence {Xk} generated by Algorithm 2 converges
to Xr.
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Proof. The assumptions of Theorem 1 are satisfied for solving the simplified problem
Zp −Λ = 0, whose variables separate, since pZr(i, i)p−1 > 0 for i = 1 · · ·n. Therefore, the
sequence {Zk} generated by Algorithm 3 converges to Zr. Hence, from Theorem 2 the
sequence {Xk} generated by Algorithm 2 converges to Xr = QZrQ

T , the SPD solution of
Xp −A = 0. 2

We would like to close this section discussing the practical choice of the initial data
in Algorithm 2. If the general Algorithm 1 is applied to a linear problem whose variables
separate, then the global convergence is guaranteed from any initial X0 and any initial
α0 > 0, for two reasons: The solution is unique and the slope for each independent equation
is constant. Unfortunately, this is not the case when solving nonlinear problems whose
variables separate. In general, the set of assumptions considered for Theorem 1 hold only
in a neighborhood of the solution, and the size of that neighborhood is problem dependent.
For the problem of computing the matrix p-th root, the size of the neighborhood of global
convergence decreases when p increases. Indeed, the size of the neighborhood for which
the sign of the independent first derivatives remain unchanged decreases when p increases.
In addition to that, we have another difficulty: The real p-th root of a given SPD matrix
is not unique when p is even, and so, if the initial data is not chosen properly, the method
could converge to a solution which is not SPD. In this work, for choosing the initial data
we have used the following effective procedures.

We choose X0 = κ1I + κ2A , where κ1 and κ2 are obtained such that the smallest
and largest eigenvalues of X0 coincide with the smallest and largest eigenvalues of p

√
A,

which clearly guarantees that X0 is SPD and commutes with A. For that we need to
obtain the smallest and the largest eigenvalues of A, which can be accomplished using the
ARPACK library, or the eigs function from Matlab. To be precise, if λmin and λmax are
the extreme eigenvalues of A, then κ1 and κ2 should satisfy p

√
λmin = κ1 + κ2λmin and

p
√
λmax = κ1 + κ2λmax. After that, the initial α0 is chosen as

α0 = 0.8 ∗ p p
√

(λmax)p−1,

that represents 80% of the largest slope at the solution out of all the independent equations
of the simplified problem.

Using these specialized procedures for choosing X0 and α0 we have observed global
convergence of Algorithm 2 in our numerical experiments. Nevertheless, for the sake
of robustness, we recommend to incorporate the Nonmonotone Derivative-Free (NDF)
line search, proposed and analyzed in [16], for the residual function (‖F (Xk)‖F ) with
the parameters M = 10, γ = 1.D − 4, and η = 0. Roughly speaking the globalization
strategy should reject Xk+1, and backtracks in the direction of −F (Xk), when the current
residual is greater than the largest of the previous M residuals. The advantages of this
globalization strategy are that it rejects the current point very seldom and guarantees
global convergence. Therefore, in practice very few backtrackings will be needed. The
globalized version of Algorithm 2 is presented in Algorithm 4.
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Algorithm 4 Globalized Residual algorithm for Xp −A = 0
1: Let X0 ∈ IRn×n commuting with A,α0 ∈ IR, α0 6= 0
2: Let γ = 1.D − 04, M = 10
3: for k = 0, 1, · · · do
4: Rk = Xp

k −A
5: fk = ‖Rk‖F
6: fk = max

0≤j≤min(k,M)
fk−j

7: X+ = Xk − (1/αk)Rk
8: while ‖Xp

+ −A‖F > (fk − γ ∗ (α2
k) ∗ fk) do

9: αk = 2αk . Backtracking
10: X+ = Xk − (1/αk)Rk
11: end while
12: Xk+1 = X+

13: Sk = Xk+1 −Xk

14: Yk = Xp
k+1 −X

p
k

15: αk+1 = 〈Sk, Yk〉/〈Sk, Sk〉
16: end for

As mentioned before, the step length αk obtained at Step 15 will be accepted most
of the time (without backtracking) at Step 12. The computational cost of Algorithm 4 is
dominated by the residual evaluation. If we use the binary powering method to evaluate
Xp the computational cost is dominated by [log2 p] + µ − 1 matrix-matrix symmetric
multiplications per iteration, where µ is the number of 1’s in the binary representation of
p (see [9] page 72); i.e., the cost is ([log2 p] + µ− 1)n3). However, it is worth mentioning
that using the Strassen fast multiplication algorithm [28] it can be reduced to O(([log2 p]+
µ− 1)nlog2 7).

4 Some related problems

The general residual method (Algorithm 1), and Theorem 1, can be applied to some
other interesting problems that can be written equivalently as a nonlinear problem whose
variables separate, and for which the first derivatives of each independent equation have
the same sign at the solution.

For example, consider the following unconstrained optimization problem

min
n∑
i=1

(exi − xi), (26)

that is equivalent to solving the following n independent nonlinear equations,

exi = 1,

for 1 ≤ i ≤ n. The function in (26) is strictly convex, the Hessian matrix is diagonal for
all x, and indeed the Barzilai-Borwein method converges globally in its pure form [20], i.
e., without any globalization strategy. Theorem 1 explains this behavior.
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Another interesting problem is to approximate the inverse of an SPD matrix A, that
can be formulated as solving the linear map

AX − I = 0.

The iterations of the general residual algorithm are given by

Xk+1 = Xk −
1
αk

(AXk − I).

If we perform the change of variables QTXkQ = Yk, where Q is an orthogonal matrix such
that QTAQ = Λ where Λ is a diagonal matrix, then the iterations are written as

Yk+1 = Yk −
1
αk

(ΛYk − I),

which is equivalent to solving ΛY − I = 0 whose solution is clearly diagonal. Therefore,
Algorithm 1 has global convergence from any initial guess. This result holds, in general,
when solving the linear system Ax = b for any SPD matrix A, which has been established
in [19].

The same approach can also be applied when solving the quadratic equation

X2 +BX + C = 0,

where B and C are symmetric and commute; and where the matrix B2− 4C is symmetric
and positive definite. In this case, the equation has an explicit solution given by

Xr = (−B + (B2 − 4C)1/2)/2.

This specific quadratic equation can be solved using Algorithm 1 since the set of assump-
tions guarantees the existence of an orthogonal matrix Q that simultaneously diagonalizes
B and C. If we apply Q on the left and also on the right we obtain an equivalent quadratic
equation for which all the involved matrices are diagonal. Therefore the problem is equiva-
lent to a problem whose variables separate. If we consider the SPD square root of B2−4C
then the derivatives of each independent equation are positive, and so Theorem 1 can be
applied.

5 Numerical experiments

We now present some numerical experiments that illustrate the behavior of Algorithm 4
for some values of p. In all our experiments X0 and α0 are chosen using the specialized
procedures described in Section 4. The tests were carried out in MATLAB 6.5 on a 1.6
GHz Pentium IV.

First we show the behavior of the norm of the residual vectors ‖Rk‖F = ‖Xp
k − A‖F

(Figure 1), and the inverse of the common step lengths αk (Figure 2), when computing the
square root of A = gallery(′moler′, 16), which is a 16× 16 SPD matrix, whose condition
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number is κA = 4.1723e + 010. We can observe the nonmonotone behavior of the algo-
rithm that accounts for the fast convergence. We also observe that the sequence {1/αk}
oscillates between two values that correspond to the smallest and the largest slopes of the
individual equations.

Figure 1: Residual behavior for A = gallery(′moler′, 16) when p = 2

In Figure 3 we show the behavior of the norm of the residual when computing the
cubic root of A = gallery(′moler′, 16). Once again we observe the nonmonotone behavior
of Algorithm 4.

Figure 2: Behavior of the inverse of the step length for A = gallery(′moler′, 16) when
p = 2

For our next experiment we generate several diagonal matrices using the MATLAB
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Figure 3: Residual behavior for A = gallery(′moler′, 16) when p = 3

function lineal(n, κA) with eigenvalues uniformly distributed between 1 and κA, where κA
varies from 1.e + 3 to 1.e + 9. In tables 1 (p = 2) and 2 (p = 3) we report the matrix
A, the size n, the condition number κA, the number of iterations, the computational
cost (Cost) reported in number of matrix-matrix products (M ′), and the relative residual
Rr = ‖Xp−A‖∞

‖A‖∞ . For these experiments the stopping criterion is ‖Xk+1−Xk‖
‖Xk‖ < 1e− 14.

A n κA Iterations Cost Rr

gallery(morel’,16) 16 4.1723e+010 28 28M ′ 7.1804e-015
lineal(100,1E03) 100 1E03 51 51M ′ 3.5202e-014
lineal(100,1E06) 100 1E06 58 58M ′ 7.5670e-015
lineal(100,1E09) 100 1E09 51 51M ′ 9.3913e-014
lineal(500,1E03) 500 1E03 78 78M ′ 1.1966e-014
lineal(500,1E06) 500 1E06 95 95M ′ 2.7181e-014
lineal(500,1E09) 500 1E09 92 92M ′ 2.5799e-014

Table 1: Behavior of Algorithm 4 for computing the square root

From Tables 1 and 2 we observe that the number of required iterations increases when
p increases from 2 to 3. This result should not be a surprise since the condition of the
derivative of F (X) = Xp −A at the solution p

√
A is given by

κ(F ′( p
√
A)) = κ(A)

p−1
p ,

which indeed increases with p. We can also observe that the computational cost increases
when the dimension and the condition number of A increase. Concerning the globalization
strategy, we have noticed in all our experiments that, indeed, very few backtrackings are
required during the convergence process (none in most experiments, and very seldom 1 or
2 at most).
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A n κA Iterations Cost Rr

gallery(morel’,16) 16 4.1723e+010 42 84M ′ 1.4204e-015
lineal(100,1E03) 100 1E03 81 162M ′ 1.1781e-013
lineal(100,1E06) 100 1E06 82 164M ′ 9.7789e-015
lineal(100,1E09) 100 1E09 85 170M ′ 3.5282e-014
lineal(500,1E03) 500 1E03 114 228M ′ 9.6582e-014
lineal(500,1E06) 500 1E06 136 272M ′ 1.2022e-014
lineal(500,1E09) 500 1E09 148 296M ′ 7.6175e-014

Table 2: Behavior of Algorithm 4 for computing the cubic root

We close this section by mentioning Smith’s method which is the method of choice for
computing pth roots of matrices. Smith’s algorithm (Algorithm 5) is based on the Schur’s
factorization. Clearly, for SPD matrices it is significantly simplified since the triangular
matrix becomes diagonal.

Algorithm 5 Smith’s Algorithm for SPD matrices
1: [Q,D] = schur(A)
2: Λ = D

1
p

3: R = QΛQt

Smith’s method achieves a high precision in the relative residual of the order of 1e−15
[9]. From Tables 1 and 2 we observe that the same precision can be obtained by Algorithm
4. However, the computational cost of Algorithm 5 is 28n3 [9], which is equivalent to
the cost of 28 matrix-matrix products (28M ′), i.e., the cost of 28 iterations of the new
method. It is worth mentioning that Algorithm 5 cannot find an approximate solution
with a lower precision. In contrast, if only a relative residual of order 1e − 6 is required,
then Algorithm 4 can be stopped prematurely to accomplish it. In Table 3, for example,
we show the behavior of Algorithm 4 after 20 iterations for computing the square root of
several matrices. In those cases the computational cost is fixed at 20M ′ and the required
low precision is obtained.

A n κA Cost Rr

lineal(100,1E03) 100 1E03 20M ′ 3.5501e-006
lineal(100,1E06) 100 1E06 20M ′ 6.4818e-006
lineal(100,1E09) 100 1E09 20M ′ 6.4974e-006

Table 3: Behavior of Algorithm 4 for computing the square root after 20 iterations

6 Final remarks

We have presented and analyzed a low-cost residual algorithm for computing the p-th root
of a given SPD matrix. It has local convergence properties in its pure form (Algorithm
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2), and global convergence in its globalized form (Algorithm 4). The new method is more
efficient and requires fewer iterations for convergence when p is small, since the condition
number of the derivative of the residual map, Xp−A, increases with p. Our results indicate
that the new scheme is robust in general, and suitable for large-scale problems for which
high accuracy is not required.

The new residual method, as well as its convergence analysis, can be applied to any
problem that can be written equivalently as a nonlinear problem whose variables separate.
It is also worth mentioning that these type of residual methods are well-suited for parallel
architectures, since only matrix-matrix products are required.

In this work, we have considered the SPD case, which is clearly the best possible
scenario for Smith’s method. In the near future we would like to study the behavior of
these type of residual methods for computing the p-th root of nonsymmetric matrices.
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