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Abstract

A secant method has been recently proposed for solving nonlinear matrix problems
with interesting features, including low computational cost and q-superlinear conver-
gence for special cases. In this work, we analyze this secant method for the special
problem of computing the sign of a given matrix. The global and q-superlinear conver-
gence of the proposed secant method are proved from specialized initial guesses, and
the numerical stability is also established. We complement our analysis with several
numerical experiments that show the advantages of using the secant method over the
well-known variant of Newton’s method for the same problem.

Keywords: Secant method, quasi-Newton methods, matrix sign function.

1 Introduction

Let A ∈ C
n×n be a matrix having no pure imaginary eigenvalues, and let

A = P

[
J− 0
0 J+

]
P−1, (1)

be the Jordan decomposition of A, where P is nonsingular. The matrices J− ∈ C
q×q,

J+ ∈ C
r×r with q + r = n, are such that their eigenvalues lie in the open left half-plane

and in the open right half-plane, respectively. The sign of A is defined as

S = sign(A) = P

[
−Iq 0
0 Ir

]
P−1, (2)

where Iq and Ir are identity matrices of dimension q and r, respectively. If A has any pure
imaginary eigenvalues, then sign(A) is not defined. The sign function is a useful tool to
solve the Lyapunov and the Riccati equation which arise in problems related to control
theory [2, 6, 8, 10, 11, 14]. The sign function can also be used to solve some eigenvalues
problems [5] and for computing invariant subspaces [1, 3, 9]. The matrix S = sign(A)

∗Departamento de Computación, Facultad de Ciencias, Universidad Central de Venezuela, Ap. 47002,
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commutes with A and satisfies that S2 = I, see [7]. Since S2 = I, the matrix S can be
computed solving the nonlinear matrix equation F (X) = 0, where

F (X) = X2 − I. (3)

The Newton method applied to solve (3) is given by

Xk+1 =
1

2
(Xk + X−1

k ), for k = 0, 2, · · · (4)

If A has no eigenvalues on the imaginary axis and we used X0 = A then, the iteration (4)
is stable and quadratically convergent to sign(A), see [7, 13, 14] for details. The iteration
(4) was proposed by Robert in [14] to solve Riccati equations. Since the secant method
can be another option to solve a nonlinear equation, in our next section we analyze a
recently proposed secant method for solving (3). In Section 3, we prove the new proposed
secant method converges globally and q-superlinearly to the sign of a given matrix, from
specialized initial guesses. In Section 4, we establish the numerical stability of the new
secant scheme. Numerical examples are present in Section 5. Finally, we give some
concluding remarks in Section 6.

2 Specialized secant method

Recently, a general secant method and its inverse version have been proposed in [12] to
solve F (X) = 0, where F is a nonlinear and Fréchet differentiable matrix function. This
secant method is based on the following iteration

Xk+1 = Xk − A−1

k F (Xk), (5)

where X−1 ∈ C
n×n and X0 ∈ C

n×n are given. Additionally, Ak+1 is a suitable linear
operator that satisfies

Ak+1Sk = Yk, (6)

with Sk = Xk+1 − Xk and Yk = F (Xk+1) − F (Xk). Equation (6) is known as the secant

equation.
Notice that an n×n matrix is enough to satisfy the matrix secant equation (6). Hence,

the operator Ak can be forced to be a matrix of the same dimension of the step Sk and
the map-difference Yk. Therefore, once Xk+1 is obtained, Ak+1 can be computed at each
iteration by solving a linear system of n2 equations. This attractive feature is in sharp
contrast with the standard extension of quasi-Newton methods for general Hilbert spaces,
(see e.g. [4, 15]). For instance, a quasi-Newton method in the space of matrices would
involve an n2 ×n2 matrix to approximate the derivative of F at Xk. For problem (3), the
direct secant method can be written as follows
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Algorithm 1 Specialized secant method

1: Given X−1 ∈ Cn×n, X0 ∈ Cn×n

2: Set S−1 = X0 − X−1 ; Set Y−1 = X2
0 − X2

−1

3: Solve A0S−1 = Y−1 ⊲ for A0

4: for k = 0, 1, · · ·until convergence do

5: Solve AkSk = −F (Xk) ⊲ for Sk

6: Set Xk+1 = Xk + Sk

7: Set Yk = X2
k+1

− X2
k

8: Solve Ak+1Sk = Yk ⊲ for Ak+1

9: end for

From Algorithm 1 we obtain

Xk+1 = Xk − (Xk − Xk−1)(X
2
k − X2

k−1)
−1(X2

k − I). (7)

Note that any initial guesses commute with identity matrix. Therefore, it is easy to show
by induction that XiXj = XjXi, for all i, j, where Xi and Xj are generated by (7). Using
this fact, (7) can be written as

Xk+1 = Xk − (Xk − Xk−1)(Xk − Xk−1)
−1(Xk + Xk−1)

−1(X2
k − I)

= (Xk + Xk−1)
−1((Xk + Xk−1)Xk − (X2

k − I))

= (Xk + Xk−1)
−1(Xk−1Xk + I). (8)

Based on equation (8), we propose the following secant method for computing the sign
matrix

Algorithm 2 Secant method for computing the matrix sign

1: Given X−1 ∈ C
n×n, X0 ∈ C

n×n

2: for k = 0, 1, · · · until convergence do

3: Solve [Xk + Xk−1]Xk+1 = Xk−1Xk + I ⊲ for Xk+1

4: end for

In the next section, we study convergence and stability of Algorithm 2.

3 Convergence

For our analysis we assume that A is diagonalizable, that is, there exists a nonsingular
matrix V such that

V −1AV = Λ = diag(λ1, λ2, · · · , λn), (9)

where λ1, λ2, · · · , λn are the eigenvalues of A. From (2), it is easy to establish that
sign(V −1AV ) = V −1sign(A)V , for any nonsingular matrix V . Therefore, using this
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property and from equation (9), we obtain that

sign(Λ) = sign(V −1AV ) = V −1sign(A)V, (10)

for details see [7]. On the other hand, if we define Dk = V −1XkV then we have from
equation (8) that

Dk+1 = (Dk + Dk−1)
−1[Dk−1Dk + I]. (11)

Notice that if D−1 and D0 are diagonal matrices then all successive Dk are diagonal too.
From (11), it is enough to prove that {Dk} converges to the sign of Λ, to ensure the
convergence of the sequence generated by Algorithm 2 to sign(A). We are now ready to
establish our convergence result.

Theorem 3.1 Let A ∈ C
n×n be a diagonalizable matrix, that is, there exists a nonsingular

matrix V such that

V −1AV = Λ = diag(λ1, λ2 · · · , λn),

where λ1, λ2 · · · , λn are the eigenvalues of A. Let us assume that A has no pure imaginary

eigenvalues, and that all iterates Xk are well defined. If X−1 = αA; α > 0 and X0 = βA;
β > 0 then the sequence {Xk}, generated by Algorithm 2, converges q-superlinearly to

sign(A).

Proof. The matrices X−1 and X0 are defined such that D−1 = V −1X−1V and D0 =
V −1X0V are diagonal matrices, then all successive Dk are diagonal too, therefore we can
write (11) as n uncoupled scalar secant iterations to solve g(x) = 0, with g(x) = x2 − 1,
given by

di
k+1 =

di
kd

i
k−1

+ 1

di
k−1

+ di
k

, (12)

where di
k = (Dk)ii and 1 ≤ i ≤ n. On the other hand, sign(Dk) = sign(Λ) for all k ≥ −1.

From (11) and (12), it is enough to study the convergence of {di
k} to the sign of λi, for all

1 ≤ i ≤ n. From (12) we have that

di
k+1 =

(di
k ± 1)(di

k−1
± 1) ∓ (di

k−1
+ di

k)

di
k−1

+ di
k

di
k+1 ± 1 =

(di
k ± 1)(di

k−1
± 1)

di
k−1

+ di
k

. (13)

Since the eigenvalues of A are not pure imaginary, we have that sign(λi) = si = ±1. Let
us choose i such that λi > 0, i.e., sign(λi) = 1. Now, from (13) we obtain that

di
k+1

− 1

di
k+1

+ 1
=

(
di

k − 1

di
k + 1

)(
di

k−1
− 1

di
k−1

+ 1

)
. (14)
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Then, applying (14) recursively, it follows that

di
k+1

− 1

di
k+1

+ 1
=

(
di
0 − 1

di
0
+ 1

)fk
(

di
−1 − 1

di
−1

+ 1

)fk−1

, (15)

where fk+1 = fk + fk−1, for k ≥ 0, and f−1 = f0 = 1. Notice that {fk} is a Fibonacci
sequence which appears quite frequently in secant-methods analysis. On the other hand,
since di

−1 = αλi > 0 and di
0 = βλi > 0, then for each i

di
−1 − 1

di
−1

+ 1
< 1 and

di
0 − 1

di
0
+ 1

< 1.

From (15) and using that sign(λi) = 1, we obtain that limk→∞ di
k = 1 = sign(λi). When

the value of i is such that sign(λi) = −1, we proceed in a similar way to prove that
limk→∞ di

k = −1 = sign(λi). Therefore,

lim
k→∞

di
k = si = sign(λi)

and
lim

k→∞
Dk = sign(Λ). (16)

Recalling Dk = V −1XkV and using (16) we have that

lim
k→∞

Xk = V ( lim
k→∞

Dk)V
−1 = V sign(Λ)V −1.

Finally using (10), we have that limk→∞ Xk = sign(A) and the convergence is established.
Now, to prove the local q-superlinear convergence, we consider that (13) can be written
as

ei
k+1 = ci

ke
i
ke

i
k−1, (17)

where ei
k = di

k − si and ci
k = 1/(di

k−1
+ di

k). Notice that ci
k tends to 1/2si when k goes

to infinity, and so it is bounded for k sufficiently large. From (17), we conclude that
each scalar secant iteration (12) converges locally and q-superlinearly to si. Therefore,
equivalently, there exists a sequence {c̃i

k}, for each 1 ≤ i ≤ n, such that c̃i
k > 0 for all k,

limk→∞ c̃i
k = 0, and

|ei
k+1| ≤ c̃i

k|ei
k|. (18)

Using (18) we now obtain in the Frobenius norm

‖Dk+1 − sign(Λ)‖2
F =

n∑

i=1

(ei
k+1)

2 ≤
n∑

i=1

(c̃i
k)

2(ei
k)

2

≤ nĉ2
k

n∑

i=1

(ei
k)

2 ≤ nĉ2
k‖Dk − sign(Λ)‖2

F , (19)
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where ĉk = max1≤i≤n{c̃i
k}. Finally, we have that

‖Xk+1 − sign(A)‖F = ‖V V −1(Xk+1 − sign(A))V V −1‖F

= ‖V (Dk+1 − sign(Λ))V −1‖F

≤ κF (V )‖Dk+1 − sign(Λ)‖F

≤ κF (V )
√

nĉk‖Dk − sign(Λ)‖F

= κF (V )
√

nĉk‖V −1V (Dk − sign(Λ))V −1V ‖F

≤ κF (V )2
√

nĉk‖Xk − sign(A)‖F ,

where κF (V ) is the Frobenius condition number of V . Hence, the sequence {Xk} converges
globally and q-superlinearly to sign(A). 2

4 Stability

We now discuss the stability of our specialized secant method for the matrix sign function
in a neighborhood of solution of equation (3). We will analyze how a small perturbation at
a given iteration is propagated over the forthcoming iterations. In our analysis we assume
exact arithmetic, and we also assume that the second order terms of perturbations are
insignificant, so they are not taken into account.

Let ∆k be the numerical perturbation introduced at the k-th iteration of Algorithm 2,
and let be

X̂k = Xk + ∆k.

From (8), we have that

X̂k+1 = (X̂k + X̂k−1)
−1(X̂k−1X̂k + I)

≈ (X̂k + X̂k−1)
−1[(Xk−1Xk + I) + Xk−1∆k + ∆k−1Xk]. (20)

On the other hand, using the well-known fact that for any nonsingular matrix B and any
matrix C, (B + C)−1 ≈ B−1 − B−1CB−1, up to second order terms, we obtain that

(X̂k + X̂k−1)
−1 = [(Xk + Xk−1) + (∆k + ∆k−1)]

−1

≈ (Xk + Xk−1)
−1 − (Xk + Xk−1)

−1(∆k + ∆k−1)(Xk + Xk−1)
−1. (21)

Substituting (21) in (20) and after some algebraic manipulations, we have that

X̂k+1 ≈ Xk+1 + (Xk + Xk+1)
−1[Xk−1∆k + ∆k−1Xk]

− (Xk + Xk+1)
−1(∆k + ∆k−1)(Xk + Xk+1)

−1(Xk−1Xk + I). (22)
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Now, recalling ∆k = X̂k−Xk, and using that for k large enough Xk is close to S = sign(A),
from (22) we have that

∆k+1 ≈ (2S)−1[S∆k + ∆k−1S] − (2S)−1(∆k + ∆k−1)(2S)−1(S2 + I). (23)

Applaying that S2 = I and S = S−1 to equation (23) we obtain that

∆k+1 ≈ 1

2
[∆k + S−1∆k−1S] − 1

2
S−1(∆k + ∆k−1)S

−1

=
1

2
[∆k − S−1∆kS

−1] +
1

2
(S−1∆k−1S − S−1∆k−1S

−1)

=
1

2
[∆k − S∆kS]. (24)

Applaying (24) recursively, and after some algebraic manipulations, we have that

∆k+1 ≈ 1

2
[∆0 − S∆0S]. (25)

From (25), we can conclude that the perturbation at iteration k + 1, ∆k+1, is bounded.
Therefore, the sequence {Xk} generated by Algorithmic 2 is numerically stable.

2

5 Numerical results

All our numerical experiments were run on a Pentium IV, 3.4GHz, using Matlab 7. We
compared our specialized secant method (Algorithm 2) with the Newton method (Itera-
tion 4). We used Y0 to denote the initial guess for Newton method and X−1, X0 were
used to denote the initial guesses for secant method. We stop all considered algorithms
when the Frobenius norm of the residual is less than 0.5 × 10−15. We report the number
of required iterations (Iter), and the norm of the residual (‖F (Xk)‖F ) when the process
is stopped. We consider that an algorithm fails when the number of iterations exceeds
50 and the symbol (**) is used to indicate it. When an algorithm fails we reported the
minimal residual reached. All matrices uses in the following tests were taken from Matlab
gallery.

Experiment 1: We consider the orthogonal matrix orthog with n = 150 and k = 4. The
results are reported in Table 1. We can observe in Figure 1 that secant method required
10 iterations to achieve convergence whereas the sequence generated by Newton method
showed stagnation. Fortunately, Newton method produced a good approximation of the
matrix sign before showing stagnation.
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Method Iter ‖F (Xk)‖F

Secant 10 4.52e-15
Newton ** 6.45e-15

Table 1: Performance of Secant method and Newton method for finding the sign of A =
gallery(’orthog’,n,4) when n = 150, X−1 = 0.5 ∗ A, X0 = 0.5 ∗ A and Y0 = A.

1 2 3 4 5 6 7 8 9 10
10

−20

10
−10

10
0

10
10

Iteraciones

||F
(X

k)|
| F

 

 

0 10 20 30 40 50 60
10

−15

10
−10

10
−5

10
0

10
5

Iteraciones

||F
(X

k)|
| F

 

 

Newton

Secante

Figure 1: Semilog of the relative error of Secant method and Newton method for finding
the sign of A = gallery(’orthog’,n,4) when n = 150, X−1 = 0.5 ∗ A, X0 = 0.5 ∗ A and
Y0 = A.

Experiment 2: We use parter with n = 150. The eigenvalues of this matrix are neither
real nor pure imaginary. The results are reported in Table 2. In this case secant method
requires more iterations than Newton method to achieve convergence, however the secant
method achieves better accuracy than Newton method.

Method Iter ‖F (Xk)‖F

Secant 16 8.96e-19
Newton 12 2.28e-15

Table 2: Performance of Secant method and Newton method for finding the sign of A =
gallery(’parter’,n) when n = 150, X−1 = 0.5 ∗ A, X0 = 0.5 ∗ A and Y0 = A.

Experiment 3: For this example we use n = 5 . The matrix A is diagonal and its
diagonal entries are the imaginary number ajj = ǫ(−1)j + ji, where ǫ > 0. For small
values of ǫ the eigenvalues of the matrix A tend to be imaginary pures, and therefore the
matrix sign(A) is not defined. In this experiment, we take different small values of ǫ and
we report the iteration when the minimal value of ‖F (Xk)‖F was reached and its value.
We can see in Table 3 that for all values of ǫ the Newton method as the secant method
reduce considerably the residual norm in spite of the ill-conditioned of sign(A). In all
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cases, the secant method requires more iterations that the Newton method, this can be
explained by the velocity of convergence of these methods: the Newton method converges
q-quadratically whereas the secant method converges q-superlinearly.

ǫ Method Iter ‖F (Xk)‖F

10−5 Secant 37 1.32e-23

Newton 27 5.09e-23

10−8 Secant 50 3.14e-20

Newton 37 6.39e-24

10−12 Secant 70 1.38e19

Newton 50 1.4e-19

10−18 Secant 101 2.22e-16

Newton 70 2.48e-20

Table 3: Performance of secant method and Newton method for finding the sign of A for
different values of ǫ, n = 5, X−1 = 0.5 ∗ A, X0 = 0.5 ∗ A and Y0 = A. The eigenvalues of
A are λj = (−1)jǫ + ji with j = 1, 2, · · · , n.

6 Concluding Remark

In this work we proposed a new method to find the sign of a given matrix. This method
could be obtained adapting a recently proposed secant method for solving nonlinear ma-
trix problems. For the new proposed algorithm we established specialized guesses that
guarantee global and q-superlinear convergence. Additionally, the numerical stability of
the sequence generated by the new algorithm was proved. In numerical experiment section
we compared our new secant algorithm with the well-known Newton’s method, and the
results show that the secant method can be a suitable option for computing the sign of a
given matrix.
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