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COMPUTING PSEUDOSPECTRA USING BLOCK ARNOLDI

ITERATION

REINALDO ASTUDILLO∗ AND ZENAIDA CASTILLO†

Abstract. The pseudospectra is a useful tool to study the behavior of systems associated
with nonnormal matrices. Different projection Krylov methods have been used to calculate the
pseudospectra of large matrices rather than typical aproaches which require the application of SVD
descomposition several times, inverse power method or Lanczos method. In this work we investi-
gated the practical applicability and the performance of Block Implicit restarted Arnoldi method
(BLIRAM) proposed in [5] to approximate the pseudospectrum of large matrices.

Key words. Pseudospectrum, Implicit restarted block Arnoldi, Block Krylov subspace methods.

1. Introduction:. The spectrum of a matrix A ∈ Cn×n is the set of all λ ∈ C

such as Ax = λx, for some non-null vector x called eigenvector. This set can be
described as:

Λ(A) = {z ∈ C : rank(zI −A) < n} = {z ∈ C : (zI −A) is singular}

where rank(A) is the number of columns linearly independent.

Computing eigenvectors and eigenvalues of large matrices is an important step
in several applications in sciences and engineering, however when this matrices are
highly non-normal (AAH 6= AHA) and sparses, the information of the spectrum
is insufficient to analize some important phenomena, for example, the behavior of
solution of dinamical systems or operators with its perturbations [6]. In recent years
pseudospectra of matrices has become an important tool to study dynamical system
with non-normal operators asociated. This concept was introduced (with different
names): by Landau (1975) [10], Varah (1967) [21] , Kostin and I. Razzakov (1985)
[9], Gudonov (1992) [7], and L. Trefethen in 1990 and 1992 [19]. Given ǫ > 0, the
pseudospectra of a matrix A ∈ C

n×n, can be defined in different equivalent ways:
Definition 1.1. The ǫ-pseudospectra of matrix A denoted by Λǫ(A) is the set of

numbers z ∈ C such that:

‖(zI −A)−1‖ > ǫ−1,(1.1)

when ‖ ⋆ ‖2 is used, the following equivalent definition is obtained:
Definition 1.2. Λǫ(A) is the set of z ∈ C such that:

smin(zI −A) < ǫ(1.2)

where smin(A) denotes the minimun singular value of A. From perturbation eigen-
value theory two more definitions are in order:

Definition 1.3. Λǫ(A) is the set of z ∈ C such that:

z ∈ Λ(A + E)

for some E ∈ Cn×n with ‖E‖ < ǫ. Λ(A) denote the set of eigenvalues of A.
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Definition 1.4. Λǫ(A) is the set of z ∈ C such that:

‖(zI −A)v‖ < ǫ

for some v ∈ C
n with ‖v‖ = 1, the vector v is called pseudoeigenvector and z pseu-

doeigenvalue.

1.1. Notation:. We will generally adopt Householder notation: capital letters
A, B, C, . . . denote matrices, AT is the transpose of the matrix A, and AH is its con-
jugate transpose, lower case letters except z denote column vectors. Greek letters
and z represent complex scalars. In is the identity matrix, and wherever the context
is clear the subindex n is eliminated. Λ(A) is the spectrum of the matrix A, while
Λǫ(A) is its ǫ-pseudospectrum, the simbol smin(A) denote the smallest singular value
of A, and λmin(A) represents the smallest eigenvalue in magnitude. The algorithm
are presented in Matlab notation and pseudoformal notation.

2. A brief comparison between spectrum and pseudospectrum analysis.

To ilustrate the diference between spectrum and pseudospectrum analysis, an example
taken from the paper of E. Mengi and M. Overton ”Algorithms for the computation
of pseudospectro radius and numerical radius of a matrix” [13] is presented.
Suppose we want to predict the behavior of ‖Ak‖, where A ∈ Cn×n. When all the
eigenvalues of the matrix A lie inside the unitary circle and k → ∞ it is well-known
that ‖Ak‖ → 0, moreover the asymptotic rate of decay of ‖Ak‖ when k →∞ can be
measured by the spectral radius of the matrix A:

ρ(A) = max{|λ| : λ ∈ Λ(A)}

However, for finite values of k the speudospectrum itself does not reveal any infor-
mation about the behavior of ‖Ak‖, unless the matrix A is normal (AAH = AHA).
When A is a non-normal matrix, ‖Ak‖ can be arbitrarily large even when the whole
spectrum is inside the unitary circle. In this case the pseudospectrum of the matrix
A enters as an useful tool, a component of the ǫ-pseudospectrum of the matrix A is
the pseudospectral radius:

ρǫ(A) = max{|z| : ∀z ∈ Λǫ(A)}.

with this definition it can be deduced that (see [23, 6]):

sup
ǫ>0

ρǫ(A) − 1

ǫ
≤ sup

k

‖Ak‖ ≤ e n sup
ǫ>0

ρǫ(A) − 1

ǫ
,(2.1)

where e =
∑

∞

i=0 1/i!. In this way the norm of the powers of A are bounded in terms of
the pseudospectral radius. The left-bound of the inequality (2.1) provides information
about how large the norms of the matrix power can grow. For example, consider the
Toeplitz pentadiagonal matrix A defined by:

aij =







−0.4 si j = i + 1;
0.4 si j ≤ i y 1 ≤ j ≥ 5 ,

0 otherwise.
.(2.2)

For this matrix ρ(A) = 0.9052, which means that all the spectrum of the matrix A
is inside of the unit circle, then ‖Ak‖ will converge to zero as k converges to infinity,
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Fig. 2.1. ǫ-Pseudospectra of the matrix A (2.2) with ǫ = 10−7

however as we can see in figure 2.1 for ǫ = 10−7 the ǫ−pseudospectrum does not lie
inside the unit circle. Using this information and the inequaties (2.1) we can predict
that the norms of Ak can be at least 5.72×105 for some fixed value of k (see figure 2.2),
and the spectral analysis itself cannot reveal any information about this behavior.

3. Pseudospectra. A classical algorithm to compute the ǫ−pseudospectrum is
sumarized in the following steps [4]:

1. Determine a region K of interest in C.
2. Discretise the region K.
3. For each point z of the discretisation, compute ‖(zI −A)−1‖.
4. Use a visualisation tool to display the computed value for z ∈ K.

There are different ways to determine and discretise the region K. For a discus-
sion of this topic see [6, 2]. To calculate ‖(zI−A)−1‖ we can use different approaches:

3.1. Basic SVD method. For each point z of the discretisation, we can com-
pute the singular value descomposition of the matrix (zI −A) and select the minimal
singular value. A Matlab version of this algorithm is:

for k=1:m
for j=1:m

sigmin = min(svd((x(k)+y(j) * 1i) * eye(N) − A)); %comnpute svd factorization
end

end
contour(x,y,log10(sigmin));
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Fig. 2.2. Behavior of ‖Ak‖ for the matrix A (2.2)

Notice that this is not a suitable algorithm for large matrices, due to expensive com-
putation for each point of the grid.

3.2. Inverse power method. An improvement of the Basic SVD algorithm
can be done taking into account that just one singular value is needed and there is
not need to compute all singular values of the matrix (zI −A). For intance, applying
the inverse power method to the matrix B = (zI − A)H(zI − A) we can obtain the
smallest singular value of (zI −A). This idea is presented in the next algotithm:

for k=1:m
for j=1:m

B = (x(k)+y(j) * 1i) * eye(N) − A);
u = randn(N,1) + 1i * randn(N,1);
[L,U] = lu(B); %Compute LU factorization
for p=1:maxit

u = L' \U' \U\L\u; %Apply th inverse of B
sig = 1/norm(u);
if (abs(sigold/sig −1) < 1e−2) break ; end
u = sig * u;
sigold = sig;

end
end
sigmin(j,k) = sqrt(sig);

end
contour(x,y,log10(sigmin));
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3.3. Lanczos method. A more sophisticated method based in the inverse power
method is the symmetric Lanczos method applied to the matrix (zI − A)H(zI − A).
At every iteration, this method requires the solutions of linear systems with (zI−A)H

and (zI − A), for this reason one could previously perform a Schur factorization of
the matrix A; this procedure will reduce the cost of each iteration, (see [12, 6]). This
approach which is outlined in the next algorithm, can not be applied to large matrices
due to its prohibitive cost.

for k=1:m
for j=1:m

T1 = (x(k)+y(j) * 1i) * eye(N) − A);
T2 = T1';
sigold = 0; qold = zeros(N,1); beta = 0; H = [];
q = randn(N,1) + 1i * randn(N,1); q = q/norm(q);
for p=1:maxit

v = T1 \(T2 \q) − beta * qold;
alpha = real(q' * v); v = v − alpha * q;
beta = norm(v); qold = q; q = v/beta;
H(p+1,p) = beta; H(p,p+1) = beta; H(p,p) = alpha;
sig = max(eig(H(1:p,1:p)));
sigold = sig;

end
sigmin(j,k) = sqrt(sig);

end
sigmin(j,k) = sqrt(sig);

end
contour(x,y,log10(sigmin));

3.4. Projection Krylov subspaces methods. In the large scale setting K.
Toh and L. Trefethen proposed in [18], a projection onto a Krylov subspace of dimen-
sion p with p < n :

Kp(A, x) = {x, Ax, A2x, . . . , Ap−1x},

using the Implicit restarted Arnoldi (IRAM)([16, 17]), to obtain factorizations of the
form:

AVp = Vp+1H̄p,(3.1)

or

AVp = VpHp, +fmet
m(3.2)

where Vp is a n× p matrix with orthonormal columns which represent a basis of
Kp(A, x) and H̄p a upper Hessenberg matrix p+1×p. In their work Toh and Trefethen
proved that:

Λǫ(H̄p) ⊆ Λǫ(A).

In this case we are talking about the pseudospectrum of a rectangular matrix, where
the definition 1.2 holds [25], then by calculating the pseudospectrum of the matrix H̄p

one can approximate the set Λǫ(A).
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Fig. 3.1. Comparison between classic methods to approximate the pseudospectrum of matrix of
the discretization of 3.3

In order to compare the methods previously mentioned, we consider the complex
matrix associated with an integral equation arising in laser theory, which was investi-
gated by Landau [11]:

Au(x) =
√

iF/π

∫

−1

1e−iF (x−y)2u(y)dy(3.3)

Figure (3.1) shows time (in seconds) required by Basic SVD, Inverse Power Method,
Lanczos and Arnoldi iteration to compute the pseudospectra of the Landau matrix
of 400 × 400. As we can see, every method produce a similar approximation for the
pseudospectrum, however, analyzing the time that each method require, we notice that,
Arnoldi just took approximately 2% of the time used by the Basic SVD method, and
about 24% of the time used by Inverse Lanczos. For a detailed discussion of the pseu-
dospectra of this matrix see [20, 6]
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4. Block Arnoldi method. This method builds a Block Krylov factorization of
size m and block size b, such as:

AV[m] = V[m]H[m] + FmEt
m(4.1)

or equivalently:

AV[m] = V[m+1]H̄[m](4.2)

where:

• V t
[m]AV[m] = H[m] is a block upper Hessenberg matrix H[m] ∈ ℜ

(m×b)×(m×b).

• H̄[m] ∈ ℜ
((m+1)×b)×(m×b).

• V t
[m]V[m] = Im×b.

• V t
[m]Fm = 0.

• The matrix V[m] = [V1, V2, . . . , Vm], contains blocks {Vi}
m
i=1 of size n × b,

which form an orthogonal basis of the block Krylov subspace of dimension m:

Km(A, X) = {X, AX, A2X, . . . , Am−1X},

where X is a n× b, non-singular matrix.

• Em = [

m−1
︷ ︸︸ ︷

Zb, Zb, Zb, . . . , Zb, Ib] with Zb and Ib the zero and identity matrices of
order b respectively.

The algorithm 1 shows the basic Block Arnoldi Method (see [15, 22] for more
details).

Algorithm 1 Block Arnoldi method Modified Gram-Smith

1: Choose a unitary matrix V1 of size n× b
2: for i = 1, . . . do

3: Wi = AVi

4: for j = 1, . . . i do

5: Hji ← V T
j Wi

6: Wi ←Wi − VjHji

7: end for

8: Compute the QR factorization of Wi

9: Vi+1 = Q, Hi+1,i = R
10: end for

Different authors [5, 1, 14] have disccused advantages and disadvanteges for block
methods, and these can be summarized as:

1. The ability to compute multiple or clutered eigenvalues more efficiently.
2. High performance computing in large scale cases, block methods replace matrix-

vector products with level-3 BLAS matrix-matrix multiplications.
3. Lost of orthonality beteween blocks.
4. For a fixed size of Krylov space. i.e. m × b, a block method will attempt to

find the wanted eigenspace in a matrix polynomial space of lower degree than
the eigspace of single vector methods, which can lead to slower convergence
for the block method.

5. Increased complexity of the algorithm and the lack of theoretical understand-
ing.
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4.1. Block Implicit restarted Arnoldi. In this work we are interested in
analizing the performance of a block Arnoldi method in the computation of Pseu-
dospectra for large matrices, and also its effectiveness compared with other methods.
In the following sections a Block Implicitly Restarted Arnoldi (BLIRAM) will be de-
scribed as well as its use in the computation of Pseudospectra for several test matrices.

Suppose that we have m steps of a Block Arnoldi process, so we have m+1 n× b-
blocks V1, V2, , Vm, Fm, an upper Hessenberg Block Matrix H[m] and the equations 4.1
and 4.2 hold. It is prohibitive make m × b as large as n for large matrices, so is
suitable to fix m and use the previus information to obtain a new starting block and
restart the process to get a better approximation to the invariant subspace.
A generalization of the well-know Implicit Restarted Arnoldi to the block case was
proposed by Z. Castillo in [5] (BLIRAM),

5. Projection Block Krylov methods for pseudospectra calculations. As
was described in [24] and [25], we use the block upper Hessenberg rectangular matrix
H̄[m] of dimension (b × m + 1) × (b × m), where b is the size block and m is the
restarting parameter of the BLIRAM algorithm, to approximate the pseudosectrum of
the matrix A, appliying the definition (1.2). Since the matrix H̄[m] has been computed
by BLIRAM with a suitable tolerance for the ritz values, for each point z of the region
of interest, we calculate smin(zI−H̄[m]) performing a QR factorization of (zI−H̄[m])
and the inverse Lanczos to the matrix RHR as we described in section 3.3. This
procedure is outlined in algorithm 2.

Algorithm 2 Bliram for pseudospectra calculations

1: Select Block size b, and restating parameter k, m
2: Call Bliram(k, m, b) to obtain the matrices H̄[m] such as AV[m] =

V[m+1]H̄[m]

3: Define a grid over a region of C enclosing converged Ritz values.
4: for each grid point z do

5: Compute the QR factorization of zI − H̄[m]

6: Get λmax(z) using inverse Lanczos on RHR
7: σmin(z) = 1/

√

λmax(z)
8: end for

6. Numerical experiments. In this secction we will compare the mainstream
methods for pseudospectra calculation (Inverse Lanczos Iteration and Implicit restarted
Arnoldi) with the block method proposed in the seccion 5. The parameters of Inverse
Lanczos, IRAM and BLIRAM are decribed in the table 6.1.

The experiment were performed in Matlab 7.3© on an Intel Pentium© IV 3.20GHz
with 2GB of RAM running on Debian Linux. We compare the implicit restarted
Arnoldi and block implicit restarted arnoldi, the stoping criteria for IRAM was based
on the convergence of the ritz values produced for these both algorithms:

‖f‖2‖D‖2 < 1e− 14,

where D is a diagonal matrix that contains the ritz eigenvalues. Stopping criterion in
BLIRAM was:

‖F‖F‖D‖F < 1e− 14,
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Table 6.1

Parameters description: maxit is the maximun number of iteration allowed, initial guesses are
chosen randomly.

Method Parameters
Inverse Lanczos maxit = 99
IRAM(k, m) maxit = 10000

k = number of wanted eigenvalues
m = size of the restart

BLIRAM(k, m, b) maxit = 10000
b = block size
k = number of wanted eigenvalues k × b
m = size of the restart m× b

Bliram k=16 m= 33 b = 3
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Time: 84.6624
sec

Fig. 6.1. Pseudospectrum of matrix of the discretization of 3.3 calculated by BLIRAM

where D is a diagonal matrix that contains the ritz values and ‖ ⋆ ‖F is the Frobenius
norm. After these two process we approximate the pseudospectrum of the matrix A,
with the pseudospectrums of the upper Hessenberg rectangular matrices obtained from
IRAM and BLIRAM.

As IRAM, BLIRAM can approximate some portions of the pseudospectrum of a
matrix, in this example we approximate the pseudospectrum of the discretization of
the operator (3.3), the figure 6.1 is quite similar to the figures produced by Basic SVD,
Inverse Power Method, Lanczos and Arnoldi iteration (figure 3.1), and this figure was
produced by BLIRAM and IRAM in a similar time..

Projection methods have been widely used for approximate the pseudospectrum of
large matrices [20, 24, 18]. In some cases they produce a good approximation in just
a portion of the time required by inverse Lanczos method. For example, consider the
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Table 6.2

Time comparison (bidiagonal matrix 6.1): Inverse Lanczos time: 63.3902 sec.

Method Time (sec) Method Time (sec)
IRAM(2,8) 1.25969 BLIRAM(1,4,2) 1.41083
IRAM(4,10) 1.33441 BLIRAM(2,5,2) 1.52877
IRAM(6,12) 1.39961 BLIRAM(3,6,2) 1.38206
IRAM(8,14) 1.53168 BLIRAM(4,7,2) 1.36918
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Fig. 6.2. Pseudospectra of the bidiagonal matrix (6.1): IRAM (upper half) Inverse Lanczos
(lower half)

bidiagonal matrix defined in [18]:

ak,k = −0.3k, ak+1,k = 1(6.1)

Using this matrix of dimension 400 we evaluate the performance of the inverse Lanc-
zos method, Iram and Bliram, in a grid of [−2, 0.4]× [−1.2, 1.2] with 50 points equally
spaced in each direction. As we can see, in the figures 6.2 and 6.3, the pseudospectrum
generated by IRAM(8,14) and BLIRAM(4,7,2), fit with the pseudospectrum caculated
by the inverse Lanczos iteration, also we can point out the improvement in the approx-
imation of the pseudospectra while the restarting parameters increase. Computational
time required by the projection methods is much lower than the time required by inverse
Lanczos iteration (see table 6.2).

In our next experiment we compute different levels of the pseudospectrum for ma-
trix gre1107(n = 1107) from Matrix Market [3], and compare the performance of in-
verse lanczos iteration, IRAM(k,m), and BLIRAM(k,m,b), on the domain [−1, 1.5]×
[0, 1] over a mesh of 50× 25 points. In the figures 6.4, 6.5, 6.6, 6.7, 6.8 and , 6.9 we
note a similar approximation of the pseudospectra generated by IRAM and BLIRAM,
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Fig. 6.3. Pseudospectra of the bidiag matrix (6.1): BLIRAM (upper half) Inverse Lanczos
(lower half)

Table 6.3

Comparison in second for the differents method for the matrix gre1107

Method Time (sec)
Inverse Lanczos 468.337
IRAM(100,150) 58.986
IRAM(120,240) 159.085
IRAM(150,270) 265.091
BLIRAM(33,50,3) 38.5291
BLIRAM(40,80,3) 107.799
BLIRAM(50,90,3) 149.108

just a crude approximation to the pseudospectra generated by Inverse Lanczos algo-
rithm for ǫ = 10−2, and a better a approximation for ǫ = 10−1, but BLIRAM took a
lower time (see table 6.3).
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IRAM k=100 m = 150
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Fig. 6.4. Pseudospectra of gre1107 matrix ǫ = 10−1

In order to ilustrate the strongly dependency of the location of the Ritz values
as BLIRAM aproximates the pseudospectrum of a matrix, we use the pentadiagonal
Toeplitz matrix:

A = gallery( 'toeppen' ,200,0,1/2,0,0,1).

The pseudspectrum of this matrix is calculated over the region [−2.5, 2.5]× [−2.5, 2.5]
over a mesh of 50× 50 points. As is depicted in figures 6.10 and 6.11, BLIRAM has
a similar behavior that IRAM, the approximations of the pseudospectra is more ac-
curate near the converged ritz value, i.e, the approximation of pseudospectrum is just
locally acceptable for both method. A possible strategy to approximate the complete
pseudospectra could be the repeated application of BLIRAM and IRAM, with different
eigenvalues selction criteria.

One of the qualities of the matrix A which affects the pseudospectra obtained by
the Krylov projection methods, is the non-normality of the matrix A [24], an example
of a slightly nonnormal matrix is the Jacobi matrix of dimension 800 for the reaction-
diffusion Brusselator model (rb800l) from chemical engineering [8]. Obeserving the
figure 6.12 when one seeks the rightmost eigenvalues with IRAM and BLIRAM the
approximations of the pseudospectrum are very close to the pseudospectrum produced
by inverse Lanczos iteration ( grid on [−1.2, 1.2] × [−1, 2.5] with 50 × 60 points).
On the other hand, experimenting with the highly non-normal matrix GRCAR [24]
of order 800 , both projection methods do not produce a good approximation of the
pseudospectra (see figure 6.13).

7. Conclusions. In this work we studied the performance of a Block Implicit
restarted Arnoldi method for pseudospectra calculations of large matrices. Numerical
experimentation shows:
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Fig. 6.5. Pseudospectra of gre1107 matrix ǫ = 10−2

Table 6.4

Comparison in second for the differents method for the matrix rb800l

Method Time (sec)
Inverse Lanczos 603.134
IRAM(90,150) 148.623
BLIRAM(30,50,3) 84.5917

• The block Arnoldi method studied in this work (BLIRAM) has a similar be-
havior to the classical projection method used for pseudospectra calculation,
the Implicit restarted Arnoldi (IRAM).
• The quality of the pseudospectra plotted using IRAM and BLIRAM are quite

similar.
• BLIRAM generally approximates the pseudspectrum of our test matrices in a

lower time than IRAM.

However there are several points that require attention:

• BLIRAM as all projection methods just approximate the pseudospectrum, and
it has a strongly dependency of the location of the ritz values.
• Block Krylov methods can fail when approximate the pseudospectrum of highly

non-normal matrices.

Finally, the next step we want to consider in the near future is to combine BLIRAM
with various acceleration and preconditioned methods and to use this Block Arnoldi
method for computation of the pseudospectra of matrices arising in some interesting
applications in sciences a engineering.
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Fig. 6.6. Pseudospectra of gre1107 matrix ǫ = 10−2
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Fig. 6.8. Pseudospectra of gre1107 matrix ǫ = 10−2
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Fig. 6.9. Pseudospectra of gre1107 matrix ǫ = 10−2
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Fig. 6.10. Effect over the pseudospectrum calculated by IRAM of pentadiagonal Toeplitz matrix
and the localization of ritz values
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Fig. 6.11. Effect over the pseudospectrum calculated by BLIRAM of pentadiagonal Toeplitz
matrix and the localization of ritz values
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Fig. 6.12. Pseudospectra of the matrix rb800l: Inverse Lanczos (left), IRAM (Center), BLI-
RAM (right)
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Fig. 6.13. Pseudospectra of the matrix GRCAR800: Inverse Lanczos (left), IRAM (Center),
BLIRAM (right)
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