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Abstract

In the positive definite case, the extreme generalized eigenvalues can be obtained by solving
a suitable nonlinear system of equations. In this work, we adapt and study the use of recently
developed low-cost derivative-free residual schemes for nonlinear systems, to solve large-scale
generalized eigenvalue problems. We demonstrate the effectiveness of our approach on some
standard test problems, and also on a problem associated with the vibration analysis of large
structures. In our numerical results we use preconditioning strategies based on incomplete
factorizations, and we compare with and without preconditioning with a well-known available
package.

Key words: Generalized eigenvalues; Generalized Rayleigh quotient; Spectral gradient method;
DF-SANE residual method.

1 Introduction

We are interested in the generalized eigenvalue problem

Ax = µBx, (1)

where A and B are n × n Symmetric and Positive Definite (SPD) matrices, x ∈ Rn, n is large,
and µ ∈ R. The values of µ that satisfy (1) are the generalized eigenvalues and the corresponding
vectors x are the generalized eigenvectors. In most applications, it is only required to compute a
few smallest eigenvalues, and their corresponding eigenvectors, see e.g. [1, 8, 11, 15, 20].

For solving problem (1) several schemes have been proposed, including factorization techniques
for small size problems (see [10] and references therein) and iterative schemes, for large-scale prob-
lems, based on Krylov subspace methods (see [11] and references therein).

Recently, for large-scale problems, an optimization algorithm that combines the Spectral Pro-
jected Gradient (SPG) method [4, 5] with preconditioning strategies [2] was introduced and analyzed
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in [3] for minimizing the generalized Rayleigh quotient. However, as we will discuss in our next
section, this novel approach requires the projection onto the ellipsoids, defined by the matrix B,
which involves inner iterations at each outer SPG iteration. In this work, motivated by the ap-
proach developed in [3], we present a suitable residual scheme that avoids the inner iterations, and
for which we propose to use a combined and adapted version of the SANE [17] and DF-SANE [16]
algorithms that have proved to be convenient for large-scale nonlinear systems of equations.

2 New Algorithm and Convergence Analysis

Let us recall the generalized Rayleigh quotient, associated with A and B, for a given x 6= 0

r(x) =
xT Ax

xT Bx
. (2)

We observe that the generalized Rayleigh quotient is a continuously differentiable map r : Rn 7→ R
for all x 6= 0, whose gradient is given by

∇r(x) =
2

xT Bx
(Ax− r(x)Bx). (3)

It is clear that any eigenvector x and its associated eigenvalue µ satisfy that r(x) = µ, and
hence in that case x is a stationary point of r, i.e., ∇r(x) = 0. Therefore, (1) can be solved using
optimization techniques. For a review of the optimization approach for solving (1) see e.g. [21] and
references therein. In particular, a vast literature can be found on gradient related methods for the
SPD eigenvalue problem (see, e.g., [6, 7, 13, 18, 19]).

More recently, for large-scale problems, the preconditioned SPG method [2] was applied in [3]
for minimizing the quadratic form xT Ax subject to the convex set

Ω = {x ∈ R : xT Bx ≤ 1},
that yields the eigenvector associated with the smallest eigenvalue of (1). For computing the
projection onto the ellipsoid Ω, at every SPG iteration, the iterative schemes recently developed by
Dai [9] were used in [3].

A simple and key observation at this point is that, since B is SPD, then ∇r(x) = 0 if and only
if x is a solution of the following nonlinear system of equations

F (x) ≡ Ax− r(x)Bx = 0. (4)

Motivated by this observation, our approach for solving (1) consist in solving the nonlinear system
of equations (4). For that, we propose a variant of the low-cost methods SANE [17] and the
derivative free DF-SANE [16] for solving (4). This combined and adapted variant for solving (1)
avoids the projection onto Ω, and will be denoted as saeig.

The methods SANE and DF-SANE use in a systematic way the residual ±F (xk) as a search
direction combined with a nonmonotone line search globalization strategy. Since A and B are SPD,
then the saeig algorithm only uses the residual −F (xk) = −(Axk− r(xk)Bxk) as a descent search
direction. Initially, saeig takes x0 ∈ Rn and generates the iterates

xk+1 = xk + λdk,

in which the steplength λ ∈ (0, 1] and the direction dk = −αkF (xk) satisfy the following inequality:

r(xk+1) ≤ r(xk) + ηk − γλ2‖dk‖2, (5)
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where αk > 0 is the spectral coefficient to be described later, γ ∈ (0, 1), {ηk} is a positive sequence
such that ∞∑

k=0

ηk ≤ η < ∞, (6)

and ‖ · ‖ denotes the Euclidian norm. Throughout this work N is the set of natural numbers.
Algorithm 1 below is a formal description of the saeig method.

Algorithm 1 (saeig method).

Step 0. Choose x0 ∈ Rn, x0 6= 0, 0 < αmin < αmax < ∞, 0 < σmin < σmax < 1, 0 < γ < 1, and a
positive sequence {ηk} that satisfies (6). Set k := 0.

Step 1. If F (xk) = 0 stop the process.
Step 2. Choose αk such that αk ∈ [αmin, αmax].
Step 3. Set d := −αkF (xk).
Step 4. Set λ := 1.
Step 5. If r(xk + λd) ≤ r(xk) + ηk − γλ2‖d‖2, set dk = d, and go to Step 7.
Step 6. Choose σ ∈ [σmin, σmax], set λ := σλ, and go to Step 5. (Backtracking process)
Step 7. Set λk = λ, xk+1 = xk + λkdk, k := k + 1, and go to Step 1.

Remark 2.1.

(i) Algorithm 1 is well defined. Indeed, by the continuity of r and since ηk > 0, the condition (5)
is satisfied after a finite number of reductions of λ (backtrackings).

(ii) dk = −(αk/2)(xT
k Bxk)∇r(xk), for all k ≥ 0.

(iii) Since A and B are SPD matrices, and αk > 0, we obtain

∇r(xk)T dk = −(αk/2)(xT
k Bxk)‖∇r(xk)‖2 < 0.

In other words, for all k, dk = −αkF (xk) is a descent direction for r at xk.

(iv) The preconditioned version of saeig method consists in building d = −αkM
−1F (xk) in Step 3,

where M is a suitable given SPD matrix of order n.

The following proposition shows that the sequence {xk} generated by Algorithm 1 is contained
in a certain closed and bounded set.

Proposition 2.1. The sequence {xk} generated by Algorithm 1 is contained in the set

Ω0 = {x ∈ Rn : r(x) ≤ r(x0) + η} .

Proof. By (5) and (6) we can write

r(xk+1) ≤ r(xk) + ηk

≤ r(xk−1) + ηk−1 + ηk

≤ · · · ≤ r(x0) +
k∑

j=0

ηj ≤ r(x0) + η.

Therefore, the sequence {xk} is contained in Ω0.
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Proposition 2.2. Let {xk} be the sequence generated by Algorithm 1. Then

lim
k→∞

λk‖dk‖ = 0. (7)

Proof. By (5) we have that

λ2
k‖dk‖2 ≤ ηk

γ
+

r(xk)− r(xk+1)
γ

, for all k ≥ 0. (8)

Since ηk satisfies (6), adding all terms in both sides of (8) it follows that
∞∑

k=0

λ2
k‖dk‖2 ≤ η + r(x0)

γ
< ∞,

and the result follows.

The theorem below shows that all limit points of the sequence {xk} generated by Algorithm 1
are stationary points of r.

Theorem 2.1. Let {xk} be the sequence generated by Algorithm 1. Then

lim
k→∞

∇r(xk) = 0. (9)

Proof. Let x∗ be a limit point of {xk}. Without loss of generality we can assume that the sequence
{xk} converges to x∗. The equation (7) holds if

lim
k→∞

‖dk‖ = 0. (10)

or if
lim inf
k→∞

λk = 0. (11)

Since dk = −(αk/2)(xT
k Bxk)∇r(xk), αk > 0, and B is an SPD matrix, then by (10) the result

holds. On the other hand, if (11) holds there exists an infinite set of indices K ⊂ N such that

lim
k→∞,k∈K

λk = 0.

By the way λk was chosen in Step 6 of Algorithm 1, there exists an index k sufficiently large such
that for all k ≥ k, k ∈ K, there exists σk (0 < σmin ≤ σk ≤ σmax) for which λ = λk/σk fails to
satisfy condition (5), i.e.,

r (xk + (λk/σk)dk) > r(xk) + ηk − γ(λk/σk)2‖dk‖2

> r(xk)− γ(λk/σk)2‖dk‖2.

Thus,
r (xk + (λk/σk)dk)− r(xk)

λ/σk
> −γ(λk/σk)‖dk‖2 > −γ(λk/σmin)‖dk‖2.

By the Mean Value Theorem we obtain

∇r(xk + tkdk)T dk > −(λk/σmin)‖dk‖2, for all k ≥ k, k ∈ K, (12)

where tk ∈ [0, λk/σk] and lim
k→∞,k∈K

tk = 0.

Now, since
∇r(xk)T dk = −(αk/2)(xT

k Bxk)‖∇r(xk)‖2 < 0, for k ≥ 0,

taking limits in (12) as k →∞, k ∈ K, we obtain that ∇r(x∗) = 0. This completes the proof.
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3 Implementation and Numerical Results

3.1 Implementation details

We implemented Algorithm saeig with the following parameters: αmin = 10−10, αmax = 1010,
α0 = 1, σmin = 0.1, σmax = 0.5, γ = 10−4, ηk = θ(1− 10−6)k, where

θ =

{
‖F (x0)‖2, if ‖F (x0)‖2 ≤ 108;
108 if ‖F (x0)‖2 > 108.

The spectral steplength was computed by the formula

αk =
sT
k sk

sT
k yk

,

where sk = xk+1−xk and yk = F (xk+1)−F (xk) (see [17] for details). However, if αk 6∈ [αmin, αmax],
we replace the spectral coefficient by

αk =





1, if ‖F (xk)‖ > 1;
‖F (xk)‖−1, if 10−5 ≤ ‖F (xk)‖ ≤ 1;
105, if ‖F (xk)‖ < 10−5.

For choosing σ ∈ [σmin, σmax] at Step 6 of saeig, we proceed as follows. Given λ > 0, we set

σ =





σmin, if λc < σminλ;
σmax, if λc > σmaxλ;
λc/λ, otherwise,

where

λc =
−λ2‖dk‖2

2(r(xk + λdk)− r(xk)− λ2‖dk‖2)
.

We stopped the process when
‖F (xk)‖
‖xk‖ ≤ tol, (13)

where tol ∈ (0, 1).

3.2 Numerical results

We compare the numerical behavior of saeig, with and without preconditioning, and the function
eigs from MATLAB, over a set of test problems. For all experiments we use the incomplete LU
factorization of the matrix A as a preconditioner for saeig, using the drop tolerance value 10−6 (i.e.,
we use the MATLAB command luinc(A,1.0e-6)). All the runs were carried out using MATLAB
version 6.0 on an Intel Centrino Duo computer at 1.8 GHz with 1GB of RAM.

We begin by solving a generalized eigenvalue problem associated with the vibration analysis
of large structures [11]. For these problems, the smallest eigenvalues correspond to the natural
frequencies of low mode of vibration, and so they are important to study the behavior of the
structure [14]. We consider the stiffness and mass matrices A and B respectively, associated with
a spring system with n masses that is shown in Figure 1.
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Figure 1: A spring system with n masses.

The matrices A and B are of the form:

A =




k1 + k2 −k2

−k2 k2 + k3 −k3

. . . . . .
−kn−1 kn−1 + kn −kn

−kn kn




, B =




m1

m2

. . .
mn


 .

For our numerical experiments we use ki = 10000 i, and mi = 20000 i, for i = 1, 2, . . . , n. We
randomly generate x0 (by rand(n,1) in MATLAB) and we set tol = 5× 10−8 in (13).

Figure 2 shows the behavior of saeig with and without preconditioning, for a spring system
with n masses. Table 1 presents the results for the spring system for different values of n, where
we report the number of iterations (IT), the number of evaluations of F (x) (EF), the CPU time in
seconds (T), and the residual

e = ‖Ax− µBx‖1, (14)

where x is the eigenvector and µ its associated eigenvalue obtained by the algorithm. Also, in this
table, we report the smallest eigenvalue µ? (computed by eigs).
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Figure 2: Behavior of saeig with and without preconditioning for a spring system with 100 masses.

For our second experiment, we consider the set of test matrices A and B taken from the Harwell-
Boeing collection [12], as listed in Table 2. We choose the initial iterate x0 as a randomly generated
number, and we set tol = 5× 10−9 in (13).

6



Table 1: Results for a spring system with n masses.

saeig without preconditioning saeig with preconditioning

n IT EF T e µ IT EF T e µ µ?

100 1894 1894 0.20 2.4e-6 2.2e-5 21 98 0.00 4.2e-6 2.2e-5 2.2e-5
250 5764 5766 0.80 6.7e-6 3.0e-6 77 570 0.11 8.7e-6 3.0e-6 3.0e-6
500 21762 21773 4.41 2.1e-5 6.6e-7 217 1990 0.44 1.7e-4 6.6e-7 6.6e-7
1000 191584 191623 282.59 1.7e-4 1.5e-7 663 7239 3.16 8.4e-3 1.5e-7 1.5e-7

Table 2: Harwell-Boeing test matrices
No. Matrix A Matrix B Size

1 bcsstk04 bcsstm04 132
2 bcsstk05 bcsstm05 153
3 bcsstk06 bcsstm06 420
4 bcsstk07 bcsstm07 420
5 bcsstk08 bcsstm08 1074
6 bcsstk09 bcsstm09 1083
7 bcsstk10 bcsstm10 1086
8 bcsstk11 bcsstm11 1473
9 bcsstk12 bcsstm12 1473
10 bcsstk13 bcsstm13 2003
11 bcsstk25 bcsstm25 15439
12 bcsstk14 I 1806
13 bcsstk15 I 3948
14 bcsstk16 I 4884
15 bcsstk17 I 10974
16 bcsstk18 I 11948

Table 3 presents the results, for problem (1) using the test matrices A and B from Table 2,
where we compare the preconditioned version of saeig with eigs(A,B,1,’SA’), with tol = 5 ×
10−9, for computing the algebraically smallest eigenvalue. We report the number of matrix-vector
multiplications (MV), the CPU time, the residual e given by (14) and the eigenvalue µ obtained by
the algorithm. The CPU time was obtained with the on-screen outputs suppressed. The symbol
“err” that appears in Problems 1, 7 and 10 indicates that eigs produced the following MATLAB
error message: “Generalized matrix B must be the same size as A and either a symmetric positive
(semi) definite matrix or its Cholesky factor”.

We observe that the CPU time and the number of matrix-vector multiplications of saeig are
significantly smaller than those of eigs. However, the errors obtained by eigs are generally smaller
than those obtained by saeig. Nevertheless, the errors of saeig can be reduced by reducing the
tolerance tol in (13). For example in Problem 10 with tol = 10−9, saeig converges to the eigenvalue
µ = 1475.34074596 with residual e = 5 × 10−1, using 424 matrix-vector multiplications in 8.56
seconds.

The MATLAB function eigs has not been designed to take advantage of preconditioning strate-
gies. Therefore, in our third and final experiment we consider the medium size problems from
Table 2 (No. 1, 2, 3, 4, and 5) and compare the behavior of saeig without preconditioning and
the MATLAB command eigs(A,B,1,’SA’). In Table 4 we show the obtained results. We now ob-
serve that the CPU time and the number of matrix-vector multiplications of eigs are significantly
smaller than those of saeig to achieve the same precision.

Based on these experiments, we conclude that the proposed residual method saeig is a robust
option for solving large-scale generalized eigenvalue problems, and it is effective and competitive
when a suitable preconditioning strategy is available, which usually happens in real applications.
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Table 3: Results for the test matrices
saeig eigs

No. MV T e µ MV T e µ

1 84 0.08 1.3e-4 43.26501367 err err err err
2 308 0.11 2.8e-3 2508.36587811 2020 0.55 3.5e-5 2508.36587811
3 30 0.05 3.1e-3 186.23517292 24620 6.47 1.8e-4 186.23517291
4 30 0.05 1.2e-2 221.19315498 66540 37.55 9.9e-5 221.19315498
5 50 0.75 2.7e-5 6.90070261 183940 89.97 1.6e-5 6.90070260
6 28 0.03 2.5e-4 29068634.2093066 37100 20.31 3.4e-2 29068634.2026896
7 292 0.69 1.9e-4 0.07864764 err err err err
8 586 6.03 5.0e-2 10.51148261 1010400 1105.13 2.9e-6 10.51148263
9 102 1.06 2.3e-2 3469.30544790 84800 141.58 1.6e-4 3469.30544794
10 420 6.91 1.1e+0 1475.34074596 err err err err
11 980 302.83 1.3e-2 0.00096140 1262000 12127.03 1.1e-4 0.00096140
12 30 0.33 2.9e-3 1.00000000 1563200 2320.38 4.6e-4 1.00000000
13 28 1.50 1.2e-2 1.00000000 1642740 5005.22 8.4e-4 1.00000000
14 28 0.22 7.2e-3 1.00000000 16020 70.50 1.5e-4 0.99999795
15 34 2.63 9.2e-4 1.00000000 2430800 22408.94 9.4e-4 1.00000000
16 198 25.73 4.3e-2 0.12413874 10000020 156250.00 4.4e+3 0.95282392

Table 4: Results for the test matrices without preconditioning

saeig eigs

No. MV T e µ MV T e µ

1 2168782 100805.0 2.5e-5 43.26501367 err err err err
2 437664 322.8 1.1e-6 2508.36587811 2020 0.55 3.5e-5 2508.36587811
3 1543642 5143.0 1.5e-5 186.23517291 24620 6.47 1.8e-4 186.23517291
4 2002004 9204.4 2.3e-5 221.19315498 66540 37.55 9.9e-5 221.19315498
5 4365672 10345.3 3.4e-5 6.90070260 183940 89.97 1.6e-5 6.90070260

Aknowledgements. We would like to thank Dora Jiménez from Universidad de Carabobo, Va-
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