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Abstract

We solve saddle point problems by accelerated versions of the classical
Cimmino’s method. For that, saddle point problems are reviewed and
reformulated as best approximation problems. In that setting, low-cost
optimization techniques are used for accelerating Cimmino’s method. En-
couraging numerical results coming from KKT systems, Stokes problems
and domain decomposition problems are presented.
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1 Introduction

In recent years, saddle point problems have been gaining popularity in many
areas of scientific computing. They arise in many applications such as: KKT
systems in optimization, mixed formulations in fluid dynamics and domain de-
composition discretizations for the parallel solution of Partial Differential Equa-
tions (PDE) [4, 12, 23]. Parallel computing is becoming an effective way for
solving large-scale numerical problems that arise in scientific and engineering
applications. However, algorithms for solving saddle point problems are not
well developed for parallel machines. Cimmino’s methods is a suitable tech-
nique for solving linear systems in many processors due to the fact that it is
inherently parallel. Nevertheless, the original Cimmino’s algorithm can be too
slow to be considered as a practical and efficient method [3, 6, 7, 9].

In this work, we reformulate the saddle point problem as computing an or-
thogonal projection onto the intersection of many suitable subspaces. A natural
choice to solve that formulation, in parallel architectures, is Cimmino’s method.
However, since it can be slow, we rewrite this problem as a convex quadratic
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minimization problem, and inherently parallel Cimmino’s versions of some op-
timization algorithms, such as the conjugate gradient method and the spectral
gradient method (also known as the Barzilai-Borwein method) are proposed and
adapted. Finally, some numerical examples with saddle point problems coming
from KKT systems, Stokes problems and domain decomposition problems are
presented.

2 Preliminaries

We are interested in solving the system of linear equations:
(

A BT

B 0

)(
x
λ

)
=

(
f
0

)
, (1)

where

(H1) B ∈ <m×n is a matrix with rank(B) = m,m ≤ n,

(H2) A ∈ <n×n is a symmetric positive definite matrix.

Proposition 2.1 Under the hypotheses (H1,H2) the system (1) has a unique
solution (x, λ)T which satisfies:

{
f −Ax ⊥ kerB,
x ∈ kerB.

(2)

Proof
Under hypotheses (H1,H2) the system:

(
A BT

0 BA−1BT

)(
x
λ

)
=

(
f

BA−1f

)
, (3)

is equivalent to (1) and BA−1BT is a positive definite matrix. Consequently
the system (1) has a unique solution [19].

Proposition 2.2 Under hypotheses (H1,H2), if (x, λ)T solves (1), then the vec-
tor x corresponds to the orthogonal projection of xu = A−1f onto kerB, in the
scalar product 〈., .〉A.

Proof
From (1) it is easy to check that the solution x verifies f −Ax = BT λ ⊥ kerB.
Let V be the linear variety defined by:

V = {x/f −Ax ⊥ kerB}. (4)

Under the hypotheses (H1,H2), the solution (x, λ)T of (1) is such that x is the
only element in the intersection of V and ker B,

{x} = V ∩ kerB. (5)
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Let xu = A−1f , the system (2) becomes
{ ∀y ∈ kerB, 〈A(xu − x), y〉 = 0,

x ∈ kerB.
(6)

When A is a symmetric and positive definite matrix, the mapping {x, y} 7→
〈Ax, y〉 is a scalar product denoted by 〈., .〉A and the system (1) is equivalent
to: 




xu = A−1f
xu − x ⊥A kerB,
x ∈ kerB.

(7)

It means that x is the orthogonal projection of xu = A−1f onto ker B, in the
scalar product 〈., .〉A. The notation xu − x ⊥A kerB means 〈xu − x, y〉A =
0 , ∀y ∈ ker B.
In this case we can write the linear variety as V = {xu}+ (kerB)⊥A [19].

3 Saddle point resolution by Cimmino’s method

Let us partition the matrix B ∈ <m×n into r row blocks:

BT = [BT
1 , BT

2 , . . . BT
r ].

Then,

kerB =
r⋂

i=1

kerBi.

From proposition (2.2), it follows that the solution x for the saddle point
problem (1) is the A-orthogonal projection of xu = A−1f onto the subspace
kerB =

⋂r
i=1 kerBi. Hence, this problem can be viewed as a Best Approxima-

tion Problem (BAP) in the scalar product 〈., .〉A and can be solved by Cimmino’s
method [3, 9]:

xk+1 =
1
r

r∑

i=1

PMixk. (8)

For the saddle point problem (1), the operator PMi becomes the A-orthogonal
projection onto Mi. As each kerBi is also a subspace, then we can calculate the
A-projection of any vector y ∈ <n onto ker Bi, PMiy, by computing x from the
smaller saddle point problem:

(
A BT

i

Bi 0

)(
x
λ

)
=

(
Ay
0

)
, (9)

These smaller saddle point problems can be solved by classical techniques. The
Schur complement matrix BiA

−1BT
i associated to (9) has dimensions mi ×mi,

where mi is the number of rows of block Bi. Consequently, the condensed system
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BiA
−1BT

i λi = Biy is much easier to solve. [4, 18, 19]. Cimmino’s method is
highly parallelizable. For this case, at each iteration, the A-projection onto each
subspace kerBi can be performed independently for i = 1, . . . , r. However, it
is known that Cimmino’s methods can be too slow. Therefore, in this work we
propose to use some accelerated versions of this method that will be discussed
in the following sections.

4 Acceleration of Cimmino’s method

In a more general setting, let Mi, i = 1, . . . , r, be closed subspaces of a Hilbert
space H. Let PMi

be the orthogonal projection onto Mi. We consider the
following function to minimize:

f(x) =
1
2

r∑

i=1

‖x− PMix‖2A =
1
2

r∑

i=1

‖(I − PMi)x‖2A. (10)

The function f is a non-negative quadratic function called proximity function
[5]. If a vector x ∈ ∩r

i=1Mi, then f(x) = 0 and x minimizes f .
For using minimization techniques, we need the gradient of f ,

∇f(x) =
r∑

i=1

x− PMix, (11)

and the Hessian,

∇2f(x) =
r∑

i=1

I − PMi . (12)

It is easy to check that in this case the Hessian operator is a constant positive
semidefinite matrix. In fact,

〈x,∇2fx〉A =
r∑

i=1

‖x− PMix‖2A ≥ 0.

Additionally 〈x,∇2fx〉A = 0 if and only if x ∈ ∩r
i=1Mi. Consequently, we

observe that the classical Cimmino’s method (8) is the gradient method with a
constant step length :

xk+1 = xk − 1
r
∇f(x).

In general, the gradient method with a constant step length is slower than the
classical steepest descent method (or Cauchy method) which is famous for be-
ing too slow. That explains the well-known slowness of Cimmino’s method.
Acceleration of Cimmino’s method can be performed by using another efficient
optimization techniques for minimizing the convex quadratic f(x) [1, 24]. In
this work, we compare the classical Cimmino’s method with accelerated ver-
sions based on the classical conjugate gradient method and the Barzilai-Borwein
method [2, 10, 16, 21, 22].
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5 Relationship between Hessian spectra and ge-
ometry of the problem

In this section we show an interesting theoretical results that relates certain
Rayleigh quotients of the Hessian matrix with the geometry of the problem.
The convergence of methods designed for minimizing the quadratic function,

f(x) =
1
2

r∑

i=1

‖x− PMi
x‖2A =

1
2

r∑

i=1

‖(I − PMi
)x‖2A (13)

are usually related to the spectral properties of the Hessian matrix

∇2f =
r∑

i=1

I − PMi . (14)

For any vector x ∈ H, the Rayleigh quotient R(x) in the A-product is given by:

R(x) =
〈x,∇2fx〉A
〈x, x〉A .

It is well-known that
λmin ≤ R(x) ≤ λmax,

where λmin and λmax are the smallest and the largest eigenvalues of the Hessian
∇2f , respectively. We denote by P

M
⊥A
i

= I −PMi the A-orthogonal projection

onto kerB⊥A
i , which is an idempotent and auto-adjoint operator in the product

〈., .〉A [14]. Therefore,

〈x,∇2fx〉A = 〈x,

r∑

i=1

x− PMix〉A

=
r∑

i=1

〈x, x− PMix〉A

=
r∑

i=1

〈x, P
M
⊥A
i

x〉A.

and
r∑

i=1

〈x, P
M
⊥A
i

x〉A =
r∑

i=1

〈P
M
⊥A
i

x, P
M
⊥A
i

x〉A

=
r∑

i=1

‖P
M
⊥A
i

x‖2A.

Hence, for all x ∈ H − {0}, the Rayleigh quotient becomes,

R(x) =
r∑

i=1

‖P
M
⊥A
i

x‖2A
‖x‖2A

.

5



When M is a closed subspace of a Hilbert space, we have for all x ∈ H − {0},

cos(span{x}, Mi) =
{ ‖PM (x)‖/‖x‖ if x /∈ M

0 if x ∈ M

[11].
As a consequence, for all x ∈ H − {0} we obtain,

R(x) =
r∑

i=1

sin2(span{x},Mi), (15)

where sin(span{x},Mi) is the sine of the angle between span{x} and Mi (in
the 〈., .〉A product).
Hence, we have,

s ≤ R(x) ≤ r,

where
s = min

i 6=j
sin2(Mj ,Mi), i, j = 1, . . . , r. (16)

Where sin(Mj ,Mi) is the sine of the angle between subspaces Mj and Mi [11].

6 Numerical Experiments

We apply Cimmino’s methods and its accelerated versions (Barzilai-Borwein-
Cimmino and Conjugate-Gradient-Cimmino) to solve:

• A selection of saddle point problems from the CUTEr collection [17].

• A set of Stokes saddle point problems generated using IFISS incompress-
ible flow software associated with the book by Elman et al. [13]
(stokes testproblems):

– STOKES1: Channel domain with natural outflow boundary.

– STOKES2: Flow over a backward facing step.

– STOKES3: Lid driven cavity.

– STOKES4: Colliding flow.

• Several domain decomposition saddle point problems discussed in [19]
(DD1, DD2, DD3 and DD4).

All our experiments were run on a Pentium IV using MATLAB 7.6. We com-
pare accelerated Cimmino’s versions versus CG-Uzawa and CG-AOP method.
CG-Uzawa is the conjugate gradient method over the condensed system (also
known as the Schur complement system) BA−1BT λ = BA−1F [4]. CG-AOP
method is a preconditioned version of CG-Uzawa [19]. The preconditioner used
by this method is ((B†)T AB†), where B† represents the pseudo-inverse of B.
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For all sets of problems, the matrix A ∈ <n×n is symmetric and positive defi-
nite, and B ∈ <m×n is a full row rank matrix. For the CUTEr problems, and
also for Stokes problems we set the block (2, 2) of the saddle point matrix to be
the zero matrix, for obtaining a system like (1).

All experiments were obtained by a one row block partition of B (r = m).
This case presents an important advantage because the Schur complement ma-
trix of system (9), (needed for computing PMi , i = 1, . . . r) has dimensions
1 × 1. The Schur complement matrix is computed by solving linear systems
Awi = BT

i , i = 1, . . . , r (that can be obtained in parallel). These are the only
linear systems solved in the algorithm. It is not necessary to solve another linear
system with the matrix A for computing PMi

.

6.1 Results

Table 1 shows the convergence behavior of the different accelerations of Cim-
mino’s method. We can see that the accelerated versions are clearly better than
the classical Cimmino’s method, in number of iterations and cpu-time. For all
problems, the conjugate gradient version of Cimmino’s method have the best
performance for all considered accelerations. Figures 1,2, and 3 show the evo-
lution of the norm of the gradient by iteration in the accelerated versions for
a CUTEr problem, a Stokes problem, and a domain decomposition problem.
We can observe the typical behavior of these fast methods when minimizing a
convex quadratic function.

Table 2 compares the conjugate gradient version of Cimmino’s versus the
conjugate gradient over the Schur complement system (CG-Uzawa and CG-
AOP). We can observe that in some problems CG-Cimmino’s can be better
than the Schur complement conjugate-gradient method in a simple-processor
machine. Quotient time/m in table 2 shows the potential speedup of CG-
Cimmino’s for parallel machines. Figures 4,5, and 6 show the evolution of the
norm of the gradient by iteration for a CUTEr problem, a Stokes problem and
a domain decomposition problem.

7 Final remarks

Our preliminary tests, in sequential machines, show an outstanding behavior of
Cimmino’s method when it is accelerated by low-cost optimization techniques
(e.g., conjugate gradient method and Barzilai-Borwein method). Taking into
account that Cimmino’s method and its accelerations are inherently parallel al-
gorithms, we hope a much better performance when they are implemented in
parallel machines. In order to improve further the performance of these tech-
niques, preconditioning strategies should also be included.

Acknowledgments.
The author would like to thank Marcos Raydan and René Escalante for inter-
esting discussions and constructive suggestions on this topic and for a careful
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Problem Cimmino’s BB Cimmino’s CG Cimmino’s
Name m n iter time iter time iter time
AUG2DCQP 1600 3280 339 211.51 117 163.93 * *
CVXQP1S 50 100 12297 49.17 306 0.72 * *
CVXQP2S 25 100 1138 2.67 58 0.08 * *
CVXQP3S 75 100 9489 55.94 1025 5.80 * *
DUALC1 215 223 10 0.38 4 0.19 4230 132.48
DUALC5 278 285 15 0.77 5 0.34 * *
DUALC8 503 510 10 1.52 6 0.84 * *
GOULDQP2S 349 659 39 1.86 23 1.25 * *
KSIP 1001 1021 60 53.95 15 13.13 * *
MOSARQP1 700 3200 8 11.28 5 9.83 * *
MOSARQP2 600 1500 8 2.42 5 1.95 * *
PRIMAL1 85 410 57 1.45 20 0.50 * *
PRIMAL2 96 745 45 1.77 20 0.77 * *
PRIMAL3 111 856 51 4.98 26 2.28 * *
PRIMAL4 75 1564 43 2.88 21 1.38 * *
PRIMALC1 9 239 6 0.05 4 0.02 * *
PRIMALC2 7 238 6 0.06 3 0.03 63 0.13
QGROW15 300 645 65 3.63 41 2.27 * *
QGROW22 440 946 71 6.92 45 4.67 * *
QSCFXM3 990 1800 3229 837.88 294 83.30 * *
STOKES1 256 578 57 2.31 30 1.63 * *
STOKES2 704 1538 74 18.61 68 17.39 * *
STOKES3 256 578 51 1.92 33 1.28 * *
STOKES4 256 578 75 2.73 29 1.14 * *
DD1 80 1600 163 3.48 64 1.45 501 10.36
DD2 85 2975 360 11.13 83 3.28 * *
DD3 70 2850 225 6.72 33 2.30 675 20.14
DD4 140 4900 231 22.11 29 9.86 693 61.31

Table 1: Comparison between different accelerated Cimmino’s methods
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Figure 1: Cimmino’s acceleration for a CUTEr problem
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Figure 2: Cimmino’s acceleration for a Stokes channel domain problem
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Figure 3: Cimmino’s acceleration for a domain decomposition saddle point,
m = 80 and n = 1600

0 20 40 60 80 100 120 140
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iterations

G
ra

di
en

t n
or

m

Saddle Point CUTEr QGROW15

 

 
Cimmino−CG
CG−UZAWA
CG−AOP

Figure 4: CG-Cimmino’s vs. conjugate gradient over condensed system for a
CUTEr problem
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Problem Cimmino’s CG CG-AOP CG-UZAWA
Name m n iter time time/m iter time iter time
AUG2DCQP 1600 3280 117 163.93 0.1025 2 1.19 122 5.63
CVXQP1S 50 100 306 0.72 0.0144 44 0.16 152 0.19
CVXQP2S 25 100 58 0.08 0.0031 36 0.14 46 0.08
CVXQP3S 75 100 1025 5.80 0.0773 47 0.19 411 0.45
DUALC1 215 223 4 0.19 0.0009 21 0.83 267 1.36
DUALC5 278 285 5 0.34 0.0012 13 0.75 229 1.84
DUALC8 503 510 6 0.84 0.0017 11 2.14 503 16.13
GOULDQP2S 349 659 23 1.25 0.0036 51 4.59 29 2.23
KSIP 1001 1021 15 13.13 0.0013 10 11.77 6 0.06
MOSARQP1 700 3200 5 9.83 0.0140 65 308.67 * *
MOSARQP2 600 1500 5 1.95 0.0033 102 79.09 4 2.56
PRIMAL1 85 410 20 0.50 0.0059 42 4.91 21 0.03
PRIMAL2 96 745 20 0.77 0.0080 31 6.89 21 0.09
PRIMAL3 111 856 26 2.28 0.0206 20 11.72 27 0.14
PRIMAL4 75 1564 21 1.38 0.0183 15 8.09 22 0.35
PRIMALC1 9 239 4 0.02 0.0017 10 0.17 3 0.02
PRIMALC2 7 238 3 0.03 0.0045 8 0.08 3 0.02
QGROW15 300 645 41 2.27 0.0076 32 6.44 140 8.69
QGROW22 440 946 45 4.67 0.0106 55 22.09 170 27.28
QSCFXM3 990 1800 294 83.30 0.0841 101 107.52 * *
STOKES1 256 578 30 1.63 0.0063 10 0.44 32 0.11
STOKES2 704 1538 68 17.39 0.0270 13 2.11 93 0.58
STOKES3 256 578 33 1.28 0.0050 9 0.39 34 0.11
STOKES4 256 578 29 1.14 0.0045 9 0.38 29 0.09
DD1 80 1600 64 1.45 0.0181 21 0.34 69 0.42
DD2 85 2975 83 3.28 0.0386 23 0.75 112 1.31
DD3 70 2850 72 2.30 0.0329 21 0.56 225 1.13
DD4 140 4900 85 9.86 0.0704 23 1.27 89 1.78

Table 2: Comparison between Cimmino’s conjugate gradient and the conjugate
gradient method applied to the Schur complement system
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Figure 5: CG-Cimmino’s vs. conjugate gradient over condensed system for a
Stokes channel domain problem
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Figure 6: CG-Cimmino’s vs. conjugate gradient for a domain decomposition
saddle point, m = 80 and n = 1600
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