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Abstract

A study of the convergence properties of spectral projected subgra-
dient method is presented and the convergence is shown. The conver-
gence is based on spectral projected gradient approach. Some updates
of the spectral projected subgradient are described.

Key words: Spectral projected gradient, subgradient optimization, global
convergence.

1 Introduction

The spectral projected gradient method is related to the practical version of
Bertsekas [2] of the classical gradient projected method of Goldstein [13] and
Levitin [16]. However, some crucial differences make this method much more
efficient than its gradient projection predecessors. The key issue is that the
first trial step at each iteration is taken using the spectral steplength intro-
duced in [1] and later analyzed in [9], [10], [17] among others. The spectral
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step is a Rayleigh quotient related with an average Hessian matrix. For a
review containing more recent advances on this special choice of steplength
see [11].

Therefore, it is natural to transport the projected spectral gradient idea
with a nonmonotone line search to the projected subgradient, in order to
speed up the convergence of the subgradient method and to use the steplength
that does not depend on the optimal value of the objective function. It just
has been done by Crema et al.[7] so the subgradient method was embeded
into a globalization strategy that accepts the spectral step as frequently as
possible.

In this work we extend the spectral projected subgradient method recently
proposed by Crema et al.[7]. We update the spectral projected subgradient
with the version of spectral projected gradient calls SPG1 ([4, 5]) and we
obtain a new version of the spectral projected subgradient calls SPS2. This
new version allows to show convergence of spectral projected subgradient
methods.

This paper is organized as follows. In section 2 we present the spectral
projected subgradient algorithm with the updates coming from spectral pro-
jected gradient. We discuss the globalization strategy, which is based on
non-monotone line search technique of Grippo, Lampariello and Lucidi [14]
combined with the globalization scheme recently proposed by La Cruz et al.
[8] along with some conditions for the spectral step. In section 3 we prove
global convergence results based on globalization strategy and under some
mild assumptions on the spectral step. Some final remarks are presented in
section 4.

2 Spectral Projected Subgradient Algorithm

Let us consider the following integer programming problem (P )

max cT x
s.t. Ax ≤ b

Dx ≤ e
x ∈ Zn, x ≥ 0

where Z represents the integer numbers, c, b and e are vectors, A and D are
matrices of suitable dimensions.

2



We are mainly concerned with the Lagrangean dual formulation of P , that
will be referred as problem (D) and is given by

min f(λ)
s.t. λ ≥ 0,

where f(λ) = max{cT x + λT (b − Ax), x ∈ X} is convex, piece-wise linear,
and non differentiable at some points.
In this work we assume that X is bounded and hence finite and Ω = {λ :
λ ≥ 0} is nonempty, closed, and convex subset of Rn.

This problem can be solved using spectral projected subgradiente [7] and
subgradient algorithm [15] among others. A brief review of the ideas associ-
ated with duality for solving integer programming problems can be found in
[3, 12, 15].

Given λ0 ∈ Ω, we define PΩ(λ0) as the projection of λ0 on Ω. We denote
gk as the subgradient of f in λk. The algorithm starts with λ0 ∈ Ω and
uses an integer M ≥ 1, a small parameter αmin > 0, a large parameter
αmax > αmin, a sufficient decrease parameter γ ∈ (0, 1) and safeguarding
parameters 0 < σ1 < σ2 < 1. Initially α0 ∈ [αmin, αmax] is arbitrary,
η0 = max(f(λ0), ‖ g(λ0) ‖), m0 = 0 and µ ∈ [0, 1]. Given λk ∈ Ω and
αk ∈ [αmin, αmax]. The algorithm SPS2 is described, it obtains λk+1 and
αk+1 at iteration k + 1.

ALGORITHM SPS2.

• Step 1.- Backtracking

Step 1.1 Set τ = αk, mk = τgk + µmk−1

Step 1.2 Set λ+ = P (λk −mk), ηk = η0

k1.1

Step 1.3

While f(λ+) > max
0≤j≤min{k,M−1}

f(λk−j) + γ(λ+ − λk)
tgk + ηk

Choose τnew ∈ [σ1τ, σ2τ ]

τ = τnew

mk = τgk + µmk−1
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λ+ = P (λk −mk)

Step 1.4

λk+1 = λ+, τk = τnew, sk = λk+1 − λk, yk = gk+1 − gk

• Step 2.- Compute αk+1

Step 2.1 Compute bk = st
kyk

Step 2.2 if bk ≤ 0, set αk+1 = αmax else, compute ak = st
ksk and

αk+1 = min{αmax, max{αmin, ak/bk}}

Step 2.3

if αk+1 ≥
108

log(k)
then αk+1 =

108

log(k)

if αk+1 ≤
10−8

log(k)
then αk+1 =

10−8

log(k)

Remarks:

1) The steplength αk is obtained using the spectral choice, the step 2.2
guarantees that st

kyk 6= 0 and step 2.3 allows to bound {αk} by one sequence
that guarantees the following condition:

αk > 0 ∀k, lim
k→∞

αk = 0,
∞∑

k=1

αk = ∞, (1)

We use the step 2.3 to bound {αk} for one sequence that satisfies the condi-
tion (1).

2) The parameter τnew could be computed in many different ways. As an
example, Crema et al.[7] use τnew=τ/2.

3) For our nonmonotone globalization technique, we combine and extend
the Grippo, Lampariello and Lucidi [14] line search scheme with the globa-
lization scheme recently proposed by La Cruz et al. [8], and used by Crema
et al.[7]. Roughly speaking, our acceptance condition for the next iterate is

f(λk+1) ≤ max
0≤j≤min{k,M−1}

f(λk−j) + γ(λk+1 − λk)
tgk + ηk (2)
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where γ is a small positive number, and ηk is chosen such that

0 <
∑

k

ηk < ∞. (3)

The terms max0≤j≤M−1 f(λk−j) and ηk > 0 are responsible for the sufficiently
nonmonotone behavior of f(λk). The parameter ηk = η0/k

(1.1) guarantees
that (3) is satisfied. If we choose ηk = η0/k

r where r > 1, then (3) will also
hold. Our feasible choice r = 1.1 is suitable for the sufficiently nonmonotone
desired behavior of the method.

4) If the parameter the momentum µ is zero the Step 1.2 changes to
λ+ = P (λk − τgk).

5) The SPS2 is stopped when MAXITER iterations are reached.

The SPS2 is similar to the algorithm SPS shown in [7] with a few differ-
ences such as: 1) λ+ is projected in each iteration into the backtracking step.
As a consequence, the scalar product (λ+ − λk)

tgk in the nonmonotone glo-
balization condition must be computed for each point λ+. 2) The condition
(1) is added to support theoretical convergence.

3 Convergence Results

We based the convergence analysis on the non-monotone line search technique
([14],[8]) and on some results of [6]. Since the spectral projected subgradient
method is not a descent method, it is common to keep track of the best point
found so far, i.e., the one with smallest function value. At each step, we set

f best
k = min{f best

k−1, f(λk)}

If λk is the best point found so far we have:

f best
k = min{f(λ1), . . . , f(λk−1), f(λk)},

i.e., f best
k is the best objective value found in k iterations, as f best

k is decre-
asing, it has a limit.
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There are many results on convergence of the subgradient method. For cons-
tant step size and constant step length, the subgradient algorithm is guaran-
teed to converge within some range of the optimal value, we have:

lim
k→∞

f best
k − f∗ < ε

where f∗ denotes the optimal value of problem , i.e., we kave f ∗ = infλf(λ).
For the diminishing step size and step length rules, the algorithm is guaran-
teed to converge to the optimal value, i.e., we have limk→∞ f(λk) = f∗.
For the following analysis of convergence, we suppose the momentum term
is zero but it can be extended for momentum term different of zero.

3.1 Basics inequalities.

Inequality 3.1a:

For a nonmonotone line search technique by Grippo, Lampariello and Lucidi
[14] we have:

f(λk+1) ≤ max
0≤j≤m(k)

f(λk−j) + γ(λk+1 − λk)
tgk

where 0 ≤ m(k) ≤ min[m(k − 1) + 1, M ] and m(0) = 0, k ≥ 1. Set l(k) be
an integer such that:

k −m(k) ≤ l(k) ≤ k,

f(λl(k)) = max
0≤j≤m(k)

f(λk−j)

and the sequence {f(λl(k))} is nonincreasing as shown in [14]. Now we observe
that:

f best
k < f(λl(k)) = max

0≤j≤m(k)
f(λk−j),

and we obtain the inequality:

f best
k − f∗ < max

0≤j≤m(k)
f(λk−j)− f∗. (3.1a)

Inequality 3.1b:
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Let zk+1 = λk − αkgk a standard spectral subgradient update before the
projection on Ω, λk+1 = PΩ(zk+1) and λ∗ an optimal solution. We have:

‖ λk+1 − λ∗ ‖2 = ‖ PΩ(zk+1)− λ∗ ‖2 ≤ ‖ zk+1 − λ∗ ‖2

Using inequality above we have:

‖ zk+1−λ∗ ‖2
2 = ‖ λk−αkgk−λ∗ ‖2

2 ≤ ‖ λk−λ∗ ‖2
2 −2αkg

T
k (λk−λ∗)+α2

k ‖ gk ‖2
2

and we obtain:

‖ λk+1 − λ∗ ‖2
2 ≤ ‖ λk − λ∗ ‖2

2 −2αkg
T
k (λk − λ∗) + α2

k ‖ gk ‖2
2 . (3.1b)

Inequality 3.1c:

If λ∗ is an optimal solution, the condition (2) is satisfied:

f∗ ≤ max
0≤j≤min{k,M−1}

f(λk−j) + γ(λ∗ − λk)
T gk + ηk

max
0≤j≤min{k,M−1}

f(λk−j)− f∗ + ηk ≥ γ(λk − λ∗)
T gk

(λk − λ∗)
T gk ≤

1

γ
( max
0≤j≤min{k,M−1}

f(λk−j)− f∗ + ηk) (3.1c)

Theorem: Consider the convex minimization problem D, and suppose an
optimal solution λ∗ exists. Suppose further that we apply the spectral projected
subgradient SPS2 with the additional assumption that there exists G > 0
such that ‖ g ‖2≤ G for all g ∈ ∂f(λ) and any λ in the set {λ/ ‖ λ− λ∗ ≤‖
λ0 − λ∗ ‖}. Then

lim
k→∞

f best
k − f∗ < ε.

Proof . Combining inequalities (3.1b) and (3.1c),

‖ λk+1−λ∗ ‖2
2 ≤ ‖ λk−λ∗ ‖2

2 −
2αk

γ
( max
0≤j≤min{k,M−1}

f(λk−j)−f∗+ηk)+α2
k ‖ gk ‖2

2)

(3.1d)
Applying (3.1d) recursively, we have:
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‖ λk+1 − λ∗ ‖2
2 ≤ ‖ λ1 − λ∗ ‖2

2 −
2

γ

k∑
i=1

αi( max
0≤j≤min{i,M−1},i=1,...,k

f(λi−j)− f∗ + ηi)

+
k∑

i=1

α2
i ‖ gi ‖2

2

= ‖ λ1 − λ∗ ‖2
2 −

2

γ

k∑
i=1

αi( max
0≤j≤min{i,M−1},i=1,...,k

f(λi−j)− f∗)

− 2

γ

k∑
i=1

αiηi +
k∑

i=1

α2
i ‖ gi ‖2

2

Using ‖ λk+1 − λ∗ ‖2
2≥ 0 we have:

2

γ

k∑
i=1

αi( max
0≤j≤min{i,M−1},i=1,...,k

f(λi−j)−f∗) ≤‖ λ1−λ∗ ‖2
2 −

2

γ

k∑
i=1

αiηi+
k∑

i=1

α2
i ‖ gi ‖2

2

max
0≤j≤min{i,M−1},i=1,...,k

f(λi−j)−f∗ ≤ (
γ

2
)
‖ λ1 − λ∗ ‖2

2 − 2
γ

∑k
i=1 αiηi +

∑k
i=1 α2

i ‖ gi ‖2
2∑k

i=1 αi

(3.1e)
Combining (3.1a) with (3.1e) we have the inequality:

fk
best − f(λ∗) ≤ (

γ

2
)
‖ λ1 − λ∗ ‖2

2 − 2
γ

∑k
i=1 αiηi +

∑k
i=1 α2

i ‖ gi ‖2
2∑k

i=1 αi

Finally, because ‖ λ1−λ∗ ‖2
2 is constant called it R and using the assumption

‖ gk ‖2≤ G, we obtain the basic inequality:

fk
best − f∗ ≤ (

γ

2
)
R− 2

γ

∑k
i=1 αiηi + G2

∑k
i=1 α2

i∑k
i=1 αi

(3.1f)

The inequality (3.1f) can be written as:

fk
best − f∗ ≤ (

γ

2
)[

R2 − 2
γ

∑k
i=1 αiηi∑k

i=1 αi

] + [(
γ

2
)
G2

∑k
i=1 α2

i∑k
i=1 αi

] (3.1f)
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In the equation (3.1f) the sequence (γ
2
)[

R2− 2
γ

Pk
i=1 αiηi

Pk
i=1 αi

] converges to zero as

k → ∞, since the numerator converges and the denominator grows with-
out bound. In other hand if the sequence αk converges to zero and is non-

summable, then [(γ
2
)

G2
Pk

i=1 α2
iPk

i=1 αi
] converges to zero, which implies the subgradi-

ent method converges (in the sense f best
k → f∗). To show this, let ε > γδ > 0

and δ > 0, γ > 0 then, there exists an integer N1 such that αi ≤ ε/G2 for all
i > N1. There also exists an integer N2 such that:

N1∑
i=1

αi ≥
1

δ
(G2

N2∑
i=1

α2
i )

since
∑∞

i=1 αi = ∞. Let N = max N1, N2. Then for k > N , we have:

(
γ

2
)
G2

∑k
i=1 α2

i∑k
i=1 αi

≤ (
γ

2
)
G2

∑N1

i=1 α2
i∑k

i=1 αi

+ (
γ

2
)

G2
∑k

i=N1+1 α2
i∑N1

i=1 αi +
∑k

i=N1+1 αi

≤ (
γ

2
)

G2
∑N1

i=1 α2
i

(1
δ
)(G2

∑N1

i=1 α2
i )

+ (
γ

2
)

G2
∑k

i=N1+1 αi(
δ

G2 )∑N1

i=1 αi +
∑k

i=N1+1 αi

≤ (
γ

2
)
1
1
δ

+ (
γ

2
)δ

∑k
i=N1+1 αi∑N1

i=1 αi +
∑k

i=N1+1 αi

≤ (
γδ

2
) + (

γδ

2
)

∑k
i=N1+1 αi∑k
i=N1+1 αi

≤ ε. �

4 Final Remarks

We study the convergence properties of the spectral projected subgradient
method and proved convergence under some mild assumptions. The com-
bination of the SPG1 approach, some conditions over spectral step and the
non-monotone line search allowed to establish the convergence of the spectral
projected subgradient.
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