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Abstract

The Matrix Model Updating Problem (MMUP), considered in this paper, concerns up-
dating a symmetric second-order finite element model so that the updated model reproduces
a given set of desired eigenvalues and eigenvectors by replacing the corresponding ones from
the original model, and preserves the symmetry of the original model. In an optimization
setting, this is a constrained nonlinear optimization problem. Taking advantage of the spe-
cial structure of the constraint sets, it is first shown that the MMUP can be formulated as
an optimization problem over the intersection of some special subspaces and linear varieties
on the space of matrices. Using this formulation, an alternating projection method is then
proposed and analyzed. The projections onto the involved subspaces and linear varieties are
characterized. To the best of our knowledge, an alternating projection method for MMUP
has not been proposed in the literature earlier. A distinct practical feature of the proposed
method is that it is implementable using only a few measured eigenvalues and eigenvectors.
No knowledge of the eigenvalues and eigenvectors of the associated quadratic matrix pencil
is required. The results of our numerical experiments on both illustrative and benchmark
problems show that the algorithm works well. The paper concludes with some future research
problems.

1 Introduction

It is well-known that vibrating structures, such as bridges, highways, buildings, etc., can be math-
ematically modelled by a system of differential equations of the form:

Mẍ(t) + Dẋ(t) + Kx(t) = 0, (1)
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where M , D and K are n× n matrices; and ẋ(t) and ẍ(t) denote the first and second derivatives
of the time-dependent vector x(t), respectively.

Equation (1) is usually obtained by discretization of a distributed parameter system with finite
element techniques, and therefore, known as the finite element model. The matrices M , D, and
K are known as mass, damping and stiffness matrices, respectively. They are often very large and
sparse, but have some nice structures, such as, M is symmetric and positive definite (M = M t > 0),
D and K are symmetric (D = Dt, K = Kt). Through out the whole paper, such assumptions will
be made.

Assuming that the solutions x(t) of (1) are of the form x(t) = veλt, the scalar λ and the vector
v solve the quadratic eigenvalue problem (QEP):

(λ2M + λD + K)v = 0,

which has 2n eigenvalues and 2n eigenvectors. The eigenvalues are the roots of the nonlinear
equation det(P (λ)) = 0 where

P (λ) = λ2M + λD + K. (2)

The eigenvalues of P (λ) are related to the natural frequencies of the homogeneous system and
the eigenvectors are the mode shapes of the vibration of the system (see, e. g., [11],[12], [30]). The
dynamics of the system are modelled by these eigenvalues and eigenvectors. For example, some-
times the vibrating structures experience dangerous vibrations, called resonance, when a natural
frequency becomes close or equal to a frequency of an external force, such as earthquake, gusty
wind, weights of the human bodies, etc. Similarly, the stability of a vibrating system is determined
by nature of a few dominating natural frequencies. The solutions of these problems naturally lead
to the following inverse eigenvalue problem for the quadratic matrix pencil: Given

• Real n × n matrices M, K, D (M = M t > 0, K = Kt and D = Dt), where the spectrum of
(2) is {λ1, . . . , λ2n} and eigenvectors are {x1, . . . , x2n}.

• A set of p self-conjugate numbers, {µ1, . . . , µp} and p vectors {y1, . . . , yp}, where p < 2n,

find matrices K̃, D̃ ∈ Rn×n (K̃ = K̃t and D̃ = D̃t), such that the spectrum of
P̃ (λ) = λ2M +λD̃+K̃ is {µ1, . . . , µp, λp+1, . . . , λ2n} and eigenvectors are {y1, . . . , yp, xp+1, . . . , x2n}.
The last requirement, namely, the invariance of the last 2n− p eigenvalues and the corresponding
eigenvectors, is known as the no spill-over in vibration literature. The problem is called Quadratic
Eigenvalue Assignment Problem(QPEVAP), when it is solved using feedback control techniques. A
usual approach for solving the QPEVAP is to transform the problem to a standard first-order state
space problem and then apply some of the specialized techniques for first-order partial eigenvalue
assignment problem (see Chapter 11 of the book [12]). However, because of several serious com-
putational difficulties, including the inversion of a possible ill-conditioned mass matrix M and the
complete loss of the exploitable structures of the matrices, M , K and D , such as the symmetry,
sparsity, and definiteness, this approach is not practical. In view of these considerations, in recent
years, several techniques for QPEVAP, which work directly in second-order setting and requires
the knowledge of only those few eigenvalues and eigenvectors that need to be reassigned, have been
developed in (e.g., [9],[15], [13], [14], [17], [18]). Unfortunately, the use of feedback control destroys
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the symmetry of the updated model. While solution of the QPEVAP does not require that the
symmetry is preserved, one of the fundamental requirements of the closely related Matrix Model
Updating Problem(MMUP)is that the updated model remains symmetric. The MMUP concerns
updating of a finite element model in such a way that a set of ”unwanted eigenvalues and eigenvec-
tors” from the original model is replaced by suitably given ones and the symmetry of the original
model preserved.

The MMUP has been well studied and there exists a large amount of literature on its solution.
For an account of the earlier methods, see the authoritative book by Friswell and Mottershead [26].
References to some of the more recent work can be found in[7]. Most of these methods, except
the one in [7], are optimization based. The idea is to formulate the problem as a constrained
optimization problem and then use some of the existing optimization techniques. In many cases,
especially when the problem is solved for an undamped model, explicit solutions can be given (see
[26]. The direct method proposed in [7] has the additional feature that it can mathematically
guarantee the no spill-over in the updated model. The last paper, however, concerns updating of
an undamped model. In [7], a symmetry preserving eigenvalue embedding scheme for a damped
model has been proposed and the scheme there is capable of preserving the no spill-over. However,
that paper considers assigning only of a given set of eigenvalues but not the eigenvectors. It is to
be noted in this context that it is not critically important from practical view point to preserve the
no spill-over per say. What is important is to guarantee that spurious modes are not introduced
into the frequency range of interests (see [26]).

In this paper, the optimization problem for MMUP for a damped model is formulated in such
a way that the well-known ”Alternating Projection” technique can be used to our advantage. This
has been done by exploiting the special structure offered by the constraint set. Using this technique,
a new method for the damped MMUP is proposed. A distinct practical feature of our proposed
alternating project method is that it can be implemented using only those few eigenvalues and
eigenvectors that are needed to be reassigned. No knowledge of the spectrum and the eigenvectors
of p(λ) is needed. It is to be noted in this context that most of the eigenvalues and eigenvectors of
p(λ),in the case when the number of degrees of freedom is quite large, are neither computable using
the state-of-the-art computational techniques nor are experimentally measurable. The results of
numerical experiments, both on illustrative and benchmark examples, shown that the algorithm is
working well.

2 Alternating Projection Method (APM)

In this section we summarize the essentials of APM. The method of alternating projections dates
back to John von Neumann [37] who treated the problem of finding the projection of a given point
in a Hilbert space H onto the intersection of two closed subspaces: M1 and M2. The geometry of
APM essentially consists in finding the best approximation to x from M1∩M2, first by projecting x
onto M1, then projecting the obtained result onto M2, The process can be continued by projecting
alternatively onto M1 and M2. This way, a sequence of elements is generated which converges to
the projection onto the intersection PM1∩M2x (see figure 1).

The practical usefulness of APM is that, in general, it is easier to compute the projection onto
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M1 and M2 separately than computing the projection onto M1 ∩M2. For a complete discussion on
alternating projection methods see Deutsch [20], and Escalante and Raydan [24].

Figure 1: Alternating projections onto the intersection of two closed subspaces.

In 1962, Halperin [28] extended this algorithm to more than two subspaces. Let PMi
(i = 1, ..., r)

denote the projection operator onto a linear subspace Mi (i = 1, ..., r) of a Hilbert space H. For
the sake of completeness we now present the key theorem associated with APM.

Theorem 1 (Halperin, 1962 [28])) If M1,M2,...,Mr are closed subspaces in H, then for each
x ∈ H,

lim
n→∞

(PMrPMr−1 ...PM1)
nx = P∩r

1Mi
x. (3)

We close this section with some comments. Theorem 1 also holds when, instead of projecting
onto subspaces, we project onto linear varieties [20]. Among all extensions and variants of APM, it
is worth mentioning that Dykstra and Boyle [21], [5] found a suitable modification of von Neumann’s
scheme for closed and convex sets. APM and their variants have been used by many researches to
solve problems on a wide variety of applications [4, 6, 10, 22, 23, 27, 29, 32, 35, 36, 38].

3 Alternating Projection Approach for MMUP

The problem of interest can be reformulated as an optimization problem as follows: Find matrices
D̃ and K̃ such that:

Min
∥∥∥K − K̃

∥∥∥2

F
+

∥∥∥D − D̃
∥∥∥2

F
(4)

subject to:
K̃ = K̃t, D̃ = D̃t

M(Λ∗1)
2Y1 + D̃(Λ∗1)Y1 + K̃Y1 = 0, (5)
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where Λ∗1 = diag(µ1, . . . , µp) and Y1 = {y1, . . . , yp} are the matrices of the desired eigenvalues
and eigenvectors. In finite element model updating literature, these are referred to as “measured”
eigenvalue and eigenvector matrices , because in finite element model updating setting, a set of
experimentally measured data is needed to be incorporated into an updated finite element model.
However, we will simply call them “desired” eigenvalues and eigenvectors, because solution of the
MMUP problem is also applicable to controlling dangerous vibration and stabilizing or improving
stability in vibration structures.

The norm ‖Z‖F = (〈Z,Z〉F )
1
2 is the Frobenius matrix norm of a matrix Z, 〈Z, Y 〉F = tr(ZT Y )

is the associated inner product of Z with a matrix Y , and tr(W ) denotes the trace of a square
matrix W .

As said before, many optimization techniques have been used for solving this Problem. We will
apply here APM which fits nicely into our situation since the constraints can be seen as subspaces
or linear varieties and the unique solution to the problem lies at their intersection.

For the sake of simplicity, we start by writing (5) as follows:

A + D̃B + K̃C = 0, (6)

where A = MY1(Λ
∗
1)

2, B = Y1(Λ
∗
1), C = Y1, and A, B, C ∈ Cn×p. We are now ready to write the

constrained problem (4) as a function of only one 2× 2 block matrix-variable. Indeed, if we define
the matrices X ∈ R2n×2n and X̃ ∈ R2n×2n as:

X =

(
K 0
0 D

)
and X̃ =

(
K̃ 0

0 D̃

)
,

then problem (4) is reduced to the problem of finding the matrix X̃ that solves the following
optimization problem:

Min
∥∥∥X − X̃

∥∥∥2

F
(7)

subject to:
X̃ = X̃ t

A + X̃22B + X̃11C = 0.

Now we need to write (6) as a function of X. For that we proceed as follows. Let the block matrices
W and Î be defined as

Î =

(
In×n

In×n

)
and W =

(
C
B

)
where In×n is the identity matrix of order n× n. Since,

A + Î t ∗ X̃ ∗W = A + (In×n In×n)

(
K̃ 0

0 D̃

) (
C
B

)
= A + (K̃ D̃)

(
C
B

)
= A + K̃C + D̃B,
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then A+ Î t ∗ X̃ ∗W = A+ K̃C + D̃B = A+ X̃22B + X̃11C. Therefore, we end up with the following
optimization problem:

Min
∥∥∥X − X̃

∥∥∥2

F
(8)

subject to:
X̃ = X̃ t (9)

A + Î t ∗ X̃ ∗W = 0. (10)

We will find the solution of (8), using APM, projecting back and forth on each one of the two
sets associated with the two constraints. The first constraint (9) defines the subspace of symmetric
matrices, whose projection is given by

P (X) =
X + X t

2
,

i. e., P (X) is the symmetric matrix closest to X (see [25]).
For the second constraint (10), we need to project onto the linear variety

V =
{
X ∈ R2n×2n/A + Zt ∗X ∗W = 0

}
.

The projection onto V can be obtained as a generalization of the standard projection onto a
linear variety in the vector space Rn (i.e., onto a hyperplane). Let us consider for a while the
problem of projecting onto the hyperplane

h = {x ∈ Rn/atx = b},

where a ∈ Rn and b ∈ R. If x ∈ h and y ∈ h then atx = b and aty = b, and so

atx− aty = 0 ⇒ at(x− y) = 0 ⇒ a ⊥ h.

Hence the vector a is orthogonal any vector in h, i. e., a is orthogonal to the hyperplane h.
Therefore, the projection onto h is given by

Ph(x) = x + βa,

where β is obtained such that Ph(x) ∈ h. Thus,

β =
b− atx

ata
.

Inspired by the projection onto a linear variety in Rn, we proceed as follows to obtain the
projection onto V . If X ∈ V and Y ∈ V then A + Zt ∗X ∗W = 0 and A + Zt ∗ Y ∗W = 0, and so

A + Zt ∗X ∗W − A− Zt ∗ Y ∗W = 0,

Zt ∗X ∗W − Zt ∗ Y ∗W = 0,

Zt ∗ (X − Y ) ∗W = 0.
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Therefore the projection of X onto the linear variety V is given by

PV (X) = X + ZΣW t,

where now the matrix Σ plays the role of β in the projection onto h.
Since PV (X) must be in V , then A + Zt ∗ PV (X) ∗W = 0, and from this expression we obtain

A + Zt(X + ZΣW t)W = 0.

Hence,
A + ZtXW + ZtZΣW tW = 0,

and so,
ZtZΣW tW = −A− ZtXW.

Since ZtZ = 2I, we finally have that

W tWΣt = −1

2
(At + W tX tZ). (11)

Consequently, we obtain the matrix Σ solving a a linear system with multiple right-hand sides
where the coefficient matrix W tW is constant. For numerical reasons it is convenient to use the
QR factorization.

In our next result we establish, using the well-known Kolmogorov’s criterion [34], that PV (X) =
X + ZΣW t is the projection of X onto V .

Theorem 2 If X ∈ R2n×2n is any given matrix, then the projection onto the linear variety V is
given by PV (X) = X + ZΣW t, where Σ satisfies (11).

Proof. Let us set S0 = PV (X) = X +ZΣW t. We want to demonstrate that 〈X−S0, S−S0〉F ≤ 0
for all S ∈ V (Kolmogorov’s criterion [34]):

〈X − S0, S − S0〉F = 〈X −X − ZΣW t, S − S0〉F = 〈−ZΣW t, S − S0〉F .

Hence, using properties of any inner product

〈X − S0, S − S0〉F = −〈Σ, Zt(S − S0)W 〉F = −〈Σ, ZtSW − ZtS0W 〉F .

Since S ∈ V then ZtSW = −A, and so

〈X − S0, S − S0〉F = −〈Σ,−A− ZtS0W 〉F = 〈Σ, A + ZtS0W 〉F .

Finally, since S0 ∈ V then A + ZtS0W = 0, and we have that

〈X − S0, S − S0〉F = 〈Σ, 0〉F = 0
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We are now ready to present our APM algorithm for solving (8):

Algorithm 1 (Updating of the matrices D and K)
Input:

• Real n× n matrices M, K, D (M = M t > 0, K = Kt and D = Dt).

• The diagonal matrix Λ∗1 = diag(µ1, . . . , µp) containing the “wanted” eigenvalues.

• The matrix Y1 = matrix whose columns are the “wanted” eigenvectors {y1, . . . , yp}.

Step 1: Compute:
A = MY1(Λ

∗
1)

2

B = Y1(Λ
∗
1)

C = Y1

Step 2: Form matrix and vectors in blocks, as follows:

X =

(
K 0
0 D

)
, Î =

(
In×n

In×n

)
, W =

(
C
B

)
Step 3: Compute a QR factorization of W :

QR = W

Step 4: While X /∈ V Do

Step 4.1: Use the QR factorization of W to find Σ
(i.e., solve RtRΣt = −1

2
(At + W tX tZ)):

Rtz = −1
2
(At + W tX tZ) (Forward substitution)

RΣt = z (Backward substitution)

Step 4.2: Project X onto V :

X = X + Z ∗ Σ ∗W t

Step 4.3: Project X onto the subspace of symmetric matrices:

X = (X + X t)/2

Output:

• Obtain the updated matrices D̃ and K̃ from the matrix X of Step 4.

Notice that the APM, to find the projection onto the intersection of the subspace of symmetric
matrices and V , is included in Step 4 of Algorithm 1. Therefore, from Theorem 1, Algorithm 1
converges to the unique solution of (8) subject to (9) and (10).
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4 Numerical experiments

In this section, we report results on some numerical experiments that illustrate the performance
of the new algorithm. In all these experiments, computing was done on a Pentium IV at 3.a GHz
with MATLAB 7.0 and 2Mb RAM. The iterative process in Algorithm 1, in all cases, is stopped
when

‖A + Zt ∗X ∗W‖F ≤ 1.D − 8.

Experiment 1: For our first experiment we choose the 4 × 4 matrices M, D, K, symmetric and
positive definite, described in Datta and Sarkissian [17]:

M =


1.4685 0.7177 0.4757 0.4311
0.7177 2.6938 1.2660 0.9676
0.4757 1.2660 2.7061 1.3918
0.4311 0.9676 1.3918 2.1876

 D =


1.3525 1.2695 0.7967 0.8160
1.2695 1.3274 0.9144 0.7325
0.7967 0.9144 0.9456 0.8310
0.8160 0.7325 0.8310 1.1536



K =


1.7824 0.0076 −0.1359 −0.7290
0.0076 1.0287 −0.0101 −0.0493
−0.1359 −0.0101 2.8360 −0.2564
−0.7290 −0.0493 −0.2564 1.9130

 .

The eigenvalues of P (λ) = λ2M + λD + K computed via MATLAB are: −0.0861 ± 1.6242i,
−0.1022 ± 0.8876i,−0.1748 ± 1.1922i,−0.4480 ± 0.2465i. We want to reassign only the most un-
stable pair of the eigenvalues; namely, −0.0861± 1.6242i to the locations −0.1± 1.6242i. Let the
matrix of vectors, to be assigned, be:

Y 1 =


1.0000 1.0000

0.0535 + 0.3834i 0.0535− 0.3834i
0.5297 + 0.0668i 0.5297− 0.0668i
0.6711 + 0.4175i 0.6711− 0.4175i

 .

The algorithm calculated the matrices D̃ and K̃ after 113 iterations with ‖D−D̃‖ = 0.9075 and
‖K−K̃‖ = 2.9507, where the eigenvalues of P̃ (λ) = λ2M+λD̃+K̃ are: −0.1000±1.6242i,−0.1241±
1.6583i,−0.1605 ± 1.2195i,−0.3358,−0.6664, and the columns of Y 1 are the eigenvectors, corre-
sponding to the eigenvalues −0.1 ± 1.6242i, that is to say, it clearly reassigned the “unwanted”
eigenvalues and eigenvectors to the desired sets satisfactorily. form.

Experiment 2: For our next experiment we consider the 30 × 30 matrices M, D, K, symmetric
and positive definite, described in Benner, Laub and Mehrmann [3]. This is a model of a string
consisting of coupled springs, dashpots, and masses as shown in Figure 2. The inputs are two
forces, one acting on the left end of the string, the other one on the right end.
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Figure 2: Coupled Spring Experiment

The parameters of this model are, m = 4.0, d = 4.0, k = 1.0, and the following matrices are
obtained:

M = D = 4.0 ∗ I30 =



4 0 0 · · · 0 0
0 4 0 · · · 0 0
0 0 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 0
0 0 0 · · · 0 4


K = 1.0 ∗ I30 =



1 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
. . . . . . . . .

...
0 0 · · · −1 2 −1
0 0 · · · 0 −1 0


.

The pencil P (λ) = λ2M +λD +K has 60 eigenvalues, but the eigenvalue that causes the insta-
bility is -1.8356e-017, and the rest of the spectrum of P (λ) is below −0.0027. We use Algorithm 1 to
find D̃ and K̃ such that the “troublesome” eigenvalue was reassigned to −0.018 and the associated
eigenvector Y1 = 1√

n
(1, 1, . . . , 1)T . After 30 iterations the algorithm solved the problem successfully,

where ‖D − D̃‖F = 0.0013, and ‖K − K̃‖F = 0.0707. The rest of the eigenvalues remained below
the indicated value.

Experiment 3: For our last experiment we choose the 211×211 matrices M, D, K, symmetric and
positive definite, described in Benner, Laub and Mehrmann [3], this example concerns a problem
arising in power plants. We consider a model of a rotating axle with several masses placed upon
it. These masses may be parts of turbines or generators and are assumed to be symmetric with
respect to the axle. The input to the system consists of changing loads which act on the masses.
This causes vibrations in the axle. The aim is to minimize the moments between two neighboring
masses in order to maximize the life expectancy. Matrices M, D, K are given by

M =diag(m1, m2, . . . ,m211) D = dij, where dij =


−γi, i + 1 = j;

γi−1 + δi + γi, i = j;
−γj, i = j + 1;
0, otherwise
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K = kij, where kij =


−κi, i + 1 = j;

κi−1 + κi, i = j;
−κj, i = j + 1;
0, otherwise.

The eigenvalue that causes the instability is 1.8281e − 007, and the rest of the 421 of P (λ) =
λ2M + λD + K are below −0.2433. To improve the stability of the system this eigenvalue must be
changed to −0.016 and the corresponding eigenvector by Y1 = 1√

n
(1, 1, . . . , 1)T . After 38 iterations

the algorithm solved the problem successfully, where ‖D−D̃‖F = 0.0374, and ‖K−K̃‖F = 2.3346.
Once again, the rest of the eigenvalues remained below the indicated value.

5 Summary and Conclusion

The MMUP for a second-order system modelling vibrating structures can be formulated as a
constrained optimization problem. Several optimization techniques have been proposed in the
literature in the past.

In this paper, by exploiting the geometry of the constraint sets, we have developed an alternating
projection method to solve MMUP. The feasible region is the intersection of a subspace and a linear
variety in the space of matrices. Particularly, we characterized the projection onto the linear variety
associated with the pencil that avoids the “unwanted” eigenvalues and eigenvectors. Results of our
numerical experiments clearly demonstrate the accuracy of the algorithm. Our future research
will be directed towards meeting several other important practical issues related to MMUP. These
include the guarantee of the no spill-over property and preservation of the other important physical
properties of the model, such as the definiteness and sparsity of the original model. Also finding
suitable techniques for acceleration of the speed of convergence of the proposed APM will be
studied in details. Regarding the no spill-over property, we have observed in our experiments that
the eigenvalues and eigenvectors which have not been reassigned have not moved to undesired
locations. However, such observation need to be supported by theoretical results, because as said
before, it is not possible to computationally verify this property for large models. Maintaining no
spill-over is specially desirable for control of vibration in large structures.
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