
Universidad Central de Venezuela 
Facultad de Ciencias 

Escuela de Computación  
 

Lecturas en Ciencias de la Computación 
ISSN 1316-6239 

 
 

 

 

Convex constrained optimization for 
large-scale generalized 

Sylvester equations 
A. Bouhamidi, K. Jbilou  y M. Raydan 

RT 2008-01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Centro de Cálculo Científico y Tecnológico de la UCV 

CCCT-UCV 

Caracas, Enero, 2008. 



Convex constrained optimization for large-scale generalized

Sylvester equations

A. Bouhamidi,∗ K. Jbilou ∗ and M. Raydan †

January 10, 2008

Abstract

We propose and study the use of convex constrained optimization techniques for
solving large-scale Generalized Sylvester Equations (GSE). For that, we adapt re-
cently developed globalized variants of the projected gradient method to a convex
constrained least-squares approach for solving GSE. We demonstrate the effectiveness
of our approach on two different applications. First, we apply it to solve the GSE that
appear after applying left an right preconditioning schemes to the linear problems
associated with the discretization of classical PDE problems. Second, we apply the
new approach, combined with a Tikhonov regularization term, to restore some blurred
and highly noisy images.

Key words: Convex optimization; Spectral projected gradient method; Generalized
Sylvester equation; Image restoration.

1 Introduction

Consider the generalized Sylvester matrix equation

q∑

i=1

Ai X Bi = C, (1)

where q is a positive integer, Ai ∈ IRn×n; Bi ∈ IRp×p; for i = 1, . . . , q, C ∈ IRn×p, and X
is the unknown matrix in IRn×p. If the matrices are large and ill-conditioned, then solving
(1) requires in general the incorporation of a regularization strategy.

Equation (1) is of interest in many different applications, including eigendecomposition
of matrix pencils [17], image restoration [8], and the numerical solution of implicit ordinary
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differential equations [20]. It is also of general interest since it includes as particular cases
several classical and important linear problems in the space of matrices: commuting ma-
trices, Block linear systems, standard Sylvester equation, and Lyapunov equation, among
others. Another interesting feature related to equation (1) is that it allows to incorpo-
rate in a natural way left or right preconditioning strategies, for any of the previously
mentioned linear matrix problems.

For solving special cases of the linear equation (1) several schemes have been pro-
posed, including factorization techniques for small size problems (see e. g., [3, 24, 29])
and iterative schemes, for large-scale problems, based on projection methods that pro-
duce a low-dimensional linear equation that is then solved using direct methods (see e.g.,
[10, 19, 32, 33, 41]). For a novel iterative approach see [39], and for a complete review
on iterative methods for large linear matrix equations, see [16]. More recently, global
extensions of the well-known Krylov subspace methods (FOM and GMRES) have been
proposed and analyzed to solve several large-scale linear matrix equations directly on the
space of matrices (see e. g., [34, 35, 36]). However, all these previous ideas show difficulties
when dealing with ill-conditioned large-scale problems.

In this work we propose to solve an equivalent constrained optimization problem in-
stead. For that, we consider the operator A defined as follows

A : IRn×p −→ IRn×p

X −→
q∑

i=1

Ai X Bi.

Let ‖Z‖F = (〈Z, Z〉F )
1
2 be the Frobenius matrix norm of a matrix Z, 〈Z, Y 〉F = tr(ZT Y )

is the associated inner product of Z with a matrix Y , and tr(W ) denotes the trace of a
square matrix W . By using properties of the trace operator, we have that for any matrices
W , Y , and Z, 〈W,Y Z〉F = 〈Y T W,Z〉F = 〈WZT , Y 〉F . Combining these properties we
obtain that the transpose of the operator A with respect to the inner product 〈. , .〉F is
defined from IRn×p onto IRn×p by

AT (X) =
q∑

i=1

AT
i X BT

i .

Instead of the generalized Sylvester equation (1), we consider the following constrained
minimization problem

Minimize f(X) subject to X ∈ Ω, (2)

where
f(X) = ‖A(X)− C‖2

F . (3)

The set Ω could be a simple convex set (e. g., a sphere or a box) or the intersection of
some simple convex sets. Specific cases that will be considered are

Ω1 = {X ∈ IRn×p : L ≤ X ≤ U} (4)
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and also
Ω2 = {X ∈ IRn×p : ‖X‖F ≤ δ}, (5)

where L and U are given matrices and δ > 0 is a given scalar. Another option to be
considered is Ω = Ω1 ∩ Ω2. In here, Y ≤ Z means Yij ≤ Zij for all possible entries
ij. Choosing the matrices L and U and/or the positive parameter δ in a suitable way,
produces the desired regularization effect.

2 Projected gradient methods

In the ill-conditioned case, the linear equation (1) can be solved minimizing the function
f given by (3) over a suitable convex set Ω. Projected Gradient (PG) methods provide an
interesting option for solving such large-scale ill-conditioned convex constrained problems.
They are simple and easy to code, and avoid the need for matrix factorizations. Moreover,
regularization can be imposed by choosing Ω in a suitable way. Early references on PG
methods can be traced back to Goldstein [23] and Levitin and Polyak [38], where constant
step lengths are used. A modified and practical monotone backtracking line search is later
introduced by Bertsekas [4] to the choice of step length. However, these early PG methods
are frequently inefficient since their performance resembles the optimal gradient method
(also known as the steepest descent method), which is usually very slow. Nevertheless, as
we will discuss in this section, the effectiveness of PG methods can be greatly improved
by incorporating recently developed choices of step length and nonmonotone globalization
strategies.

There have been many different variations of the early PG methods. They all have the
common property of maintaining feasibility of the iterates by frequently projecting trial
steps on the feasible convex set. In particular, Birgin et al. [5, 6] combine the projected
gradient method with recently developed ingredients in unconstrained optimization to
propose an effective scheme that is known as the Spectral Projected Gradient (SPG)
method. In our setting, the algorithm starts with X0 ∈ IRn×p, and moves at every iteration
k along the internal projected gradient direction Dk = PΩ(Xk − αk∇f(Xk))−Xk, where
αk is the spectral (also known as the Barzilai-Borwein [2]) choice of step length

αk =
〈Sk−1, Sk−1〉
〈Sk−1, Yk−1〉 ,

Sk−1 = Xk − Xk−1, Yk−1 = ∇f(Xk) − ∇f(Xk−1), and for Z ∈ IRn×p, PΩ(Z) is the
projection of Z onto Ω. In the case of rejection of the first trial point, Xk + Dk, the next
ones are computed along the same direction, i.e., X+ = Xk + λDk, using an extension
of the Grippo, Lampariello and Lucidi (GLL) [28] nonmonotone line search to choose
0 < λ ≤ 1 such that the following condition holds

f(X+) ≤ max
0≤j≤ min {k,M−1}

f(Xk−j) + γλ〈Dk,∇f(xk)〉,

where M ≥ 1 is a given integer and γ is a small positive number. As a consequence,
the projection operation must be performed only once per iteration. More details can be
found in [5] and [6].
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As we mentioned before, the SPG method is related to the classical projected gradient
method. However, some crucial differences make this method much more efficient than its
gradient projection predecessors. The key issue is that the first trial step at each iteration
is taken using the spectral step length introduced in [2] and later analyzed in [15], [21], [40]
among others. The spectral step is a Rayleigh quotient related with an average Hessian
matrix. For a review containing the more recent advances on this special choice of step
length see [22].

The second important issue is the use of nonmonotone line search strategies to globalize
the process. This feature seems to be essential to preserve the nice and nonmonotone
behavior of the iterates produced by single spectral gradient steps. In this work, we enrich
further the globalization technique by combining the GLL line search scheme with the
recently proposed and analyzed globalization scheme of La Cruz et al. [37]. Roughly
speaking our acceptance condition for the next iterate is

f(X+) ≤ max
0≤j≤ min {k,M−1}

f(Xk−j) + γλ〈Dk,∇f(xk)〉+ ηk,

where ηk ≥ 0 is chosen such that ∑

k

ηk < ∞. (6)

The terms max0≤j≤ min {k,M−1} f(Xk−j) and ηk are responsible for the sufficiently non-
monotone behavior of f(Xk).

For the sake of completeness, we now present the algorithm used in this work. It starts
with X0 ∈ Ω and uses an integer M ≥ 1; a small parameter αmin > 0; a large parameter
αmax > αmin; a sufficient decrease parameter γ ∈ (0, 1) and safeguarding parameters
0 < σ1 < σ2 < 1. Initially, α0 ∈ [αmin, αmax] is arbitrary.

Given Xk ∈ Ω and αk ∈ [αmin, αmax], our extended version of the SPG algorithm
describes how to obtain Xk+1 and αk+1, and when to terminate the process.

Extended SPG
Step 1: Detect whether the current point is stationary. If

‖PΩ(Xk −∇f(Xk))−Xk‖F = 0,

stop, declaring that Xk is stationary.
Step 2: Backtracking
Step 2.1: Set Dk = PΩ(Xk − αk∇f(Xk))−Xk, and λ ←− 1
Step 2.2: Set X+ = Xk + λDk

Step 2.3: If

f(X+) ≤ max
0≤j≤ min {k,M−1}

f(Xk−j) + γλ〈Dk,∇f(xk)〉+ ηk (7)

then λk = λ, Xk+1 = X+, Sk = Xk+1 −Xk, Yk = ∇f(Xk+1)−∇f(Xk),
go to Step 3.
If (7) does not hold, define λnew ∈ [σ1λ, σ2λ], λ ←− λnew and
go to Step 2.2.
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Step 3: Compute bk = 〈Sk, Yk〉, if bk ≤ 0, set αk+1 = αmax, else, compute
αk = 〈Sk, Sk〉 and αk+1 = min(αmax,max(αmin, ak

bk
)).

For the calculation of λnew in Step 2.3 we can use the one dimensional quadratic
interpolation as described in Birgin et al [5]. If the set Ω is a simple set (e. g., box
or sphere), then projecting is an easy task as described in our next section. If Ω is the
intersection of several (finite) simple convex sets, then projecting requires the use of more
advanced schemes. An interesting option is provided by Dykstra’s alternating projection
algorithm [9].

3 Ingredients for the optimization approach

The function f : IRn×p → IR defined in (3) is differentiable and its gradient can be obtained
as follows. Consider the auxiliary function g : IR → IR, given by

g(t) = f(X + tP ),

for any arbitrary matrix P . From basic calculus we know that g′(0) = 〈∇f(X), P 〉F . After
simple algebraic manipulations it follows that

g′(0) = 2〈A(X)− C,A(P )〉F = 2〈AT
(A(X)− C

)
, P 〉F , (8)

and so the gradient of f is given by

∇f(X) = 2AT
(A(X)− C

)
= 2

q∑

i=1

AT
i (A(X)− C)BT

i .

Notice that computing the gradient of f at a given X requires O(p) matrix-matrix prod-
ucts.

We now describe the projection onto the possible convex sets to be considered. One
option is the box Ω1 (bounds on the entries of X) defined in (4). In that case, the matrices
L and U are given by entry-wise lower and upper bounds. Some or all of the entries in
the matrix L might have the value −∞, and similarly some or all of the entries in the
matrix U might have the value +∞. Clearly, when Lij = −∞ and Uij = +∞ for all ij,
then Ω1 = IRn×p, and we are dealing with the unconstrained minimization of f .

When the feasible region is Ω1, the projection (minimal distance) of a given matrix
Z ∈ IRn×p, PΩ1(Z), is obtained as the unique solution to the problem

min
X∈Ω1

‖X − Z‖F ,

whose ij-entry is given by

(PΩ1(Z))ij =





Zij if Lij ≤ Zij ≤ Uij

Uij if Zij > Uij

Lij if Zij < Lij .
(9)
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Another option to be considered is when the feasible region is the sphere Ω2 defined
in (5). In that case, the radius δ > 0 is given. As before, δ might have the value +∞, in
which case Ω2 = IRn×p, and we are dealing with the unconstrained minimization of f .

When the feasible region is Ω2, the projection (minimal distance) of a given matrix
Z ∈ IRn×p, PΩ2(Z), is obtained as the unique solution to the problem

min
X∈Ω2

‖X − Z‖F ,

that is given by

PΩ2(Z) =

{
Z if ‖Z‖F ≤ δ

( δ
‖Z‖F

) Z if ‖Z‖F > δ.
(10)

A third option is to consider Ω = Ω1 ∩ Ω2 as the feasible convex region. In that
case, we can use the inexact version of the SPG method, discussed in [7], that combines
the SPG with Dykstra’s alternating projection algorithm to find the projection onto the
intersection inexactly (avoiding an excessive computational effort).

4 Standard Sylvester equations and preconditioning

We now consider the solution of standard Sylvester equations to illustrate the possibility of
incorporating, in a natural way, left or right preconditioning strategies for solving several
classical problems in the space of matrices, when dealing with the generalized matrix
equation (1).

Consider the Sylvester equation

AX −XB = Ĉ, (11)

where A ∈ IRn×n, B ∈ IRp×p, Ĉ ∈ IRn×p, and X is the unknown matrix in IRn×p. Equation
(11) can be seen as a special case of (1) by setting q = 2, A1 = A, B2 = −B, B1 = Ip,
A2 = In, and C = Ĉ.

Let us now assume that, as it happens frequently in applications, one of the dimensions
(n or p) is much larger than the other. For example, let us assume that n À p. Let us
also assume that a suitable approximation , say W , to the inverse of A is available. In
what follows the matrix W will play the role of a left (inverse) preconditioner for problem
(11). By multiplying (11) from the left by L we clearly obtain a new special case of (1),
given by

WAX −WXB = WĈ, (12)

where q = 2, A1 = WA, B2 = −B, B1 = Ip, A2 = W , and C = WĈ. Hopefully (12) is
easier to solve than (11). However, notice that (12) is no longer a standard Sylvester equa-
tion, and so classical schemes for solving (11) cannot be applied anymore. Nevertheless,
in both cases we can apply the extended SPG algorithm described in Section 2, imposing
regularity by choosing a suitable convex set.
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Similarly, if p À n and a suitable approximation , say R, to the inverse of B is available,
then R can be used as a right (inverse) preconditioner in (11) to obtain

AXR−XBR = ĈR, (13)

where now q = 2, A1 = A, B2 = −BR, B1 = R, A2 = In, and C = ĈR. Once again, the
extended SPG algorithm described in Section 2 can be applied to solve (13).

To illustrate the effectiveness of our approach we now present some numerical experi-
ments. The Extended SPG method was implemented in Matlab 7.0 on an Intel Pentium
workstation with about 16 significant decimal digits. The parameters in our extended
SPG implementation are chosen in a standard way as follows: M = 10, ηk = |f(X0)|/k1.1,
αmin = 1.D− 15, αmax = 1.D + 15, γ = 1.D− 4, σ1 = 0.1, and σ2 = 0.9. The process was
stopped when the norm of the residual satisfies

‖PΩ(Xk −∇f(Xk))−Xk‖F = tol,

for tol = 1.D − 5. We present the numerical results obtained for some experiments for
which the matrices are obtained by discretizing classical PDE problems, introduced in
[36], as follows. The matrix A in (11) is generated from the 5-point discretization of the
operator

LA(u) = ∆u− f1(x, y)
∂u

∂x
− f2(x, y)

∂u

∂y
− f3(x, y)u

on the unit square [0, 1]× [0, 1] with homogeneous Dirichlet boundary conditions. We set
f1(x, y) = ex+y, f2(x, y) = 100y, and f3(x, y) = x. Similarly, the matrix B in (11) is
generated from the 5-point discretization of the operator

LB(u) = ∆u− g1(x, y)
∂u

∂x
− g2(x, y)

∂u

∂y
− g3(x, y)u

on the unit square [0, 1]× [0, 1] with homogeneous Dirichlet boundary conditions. We set
g1(x, y) = sin(x + 2y), g2(x, y) = ey, and g3(x, y) = xy.

The matrix Ĉ is chosen such that a preestablished X∗ solves (11). We set X∗ as a
random matrix with entries in [0, 1], and we start from X0 = 0 and α0 = 1/||∇f(X)||2.
The dimensions of A and B are n = n2

0 and p = p2
0 respectively, where n0 and p0 are the

number of internal grid points in each direction. Our convex set is the box Ω1 defined by
Lij = 0 and Uij = 1 for all entries i, j.

We consider, without loss of generality, the case n À p, and use three possible options
for preconditioning: W = I (no preconditioning), W = W1 ≡ L̂−1, and W = W2 ≡
Û−1L̂−1, where L̂ and Û come from an incomplete LU factorization of A given by the
Matlab command [L̂, Û ] = luinc(A, 1e − 3). Notice that L̂ and Û are sparse matrices.
Notice also that, for approximating the inverse of A, W2 is better than W1. The results
are reported in Table 1. We can observe the reduction in number of required iterations, for
solving large-scale Sylvester equations, when the quality of the preconditioning strategy
is improved.
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Table 1: Performance of the extended SPG algorithm for solving (12) for different precon-
ditioning strategies and different dimensions

n = 100, p = 4 n = 900, p = 16
Preconditioning strategy Iter Residual norm Iter Residual norm

I 1375 1.8D-7 > 5000 ***
W1 293 7.1D-8 2765 6.9D-7
W2 33 8.6D-6 792 8.5D-7

5 Application to image restoration

Consider the linear discrete ill-posed problem

min
x∈eΩ ‖Hx− g‖2, (14)

where H ∈ IRM×N , x ∈ IRN , g ∈ IRM and M ≥ N . The set Ω̃ ⊂ IRN could be a simple
convex set (e. g., a sphere or a box) or the intersection of some simple convex sets.
The matrix H is of ill-determined rank, i.e., H has many singular values of different
orders of magnitude close to the origin. The matrix H is assumed to be very large so its
factorization is undesirable.
The right-hand side vector g in (14) represents the available output and is assumed to be
contaminated by an error (noise) n, i.e., g = ĝ + n.

Such a system (14) arises in image restoration problems. The problem consists of the
reconstruction of an original image that has been digitized and has been degraded by a
blur and an additive noise. The matrix H represents the blurring matrix, the vector x to
be approximated represents the original image, the vector n represents the additive noise
and the vector g represents the blurring and noisy (degraded) image. Additional details
about image restoration can be found in the books by Chan and Shen [14], and Hansen,
Nagy, and O’Leary [31].

The noise in the measurements, in combination with the ill conditioning of H, means
that the exact solution of (14) has little relationship to the noise-free solution.

In the context of image restoration, when the point spread function (PSF) is separable,
the blurring matrix H is given as a Kronecker product H = H2 ⊗ H1 of two blurring
matrices where H1 and H2 are of size n × n and p × p, respectively, and ⊗ denotes the
Kronecker product (see, e.g., [31]). Using some properties of the Kronecker product,
problem (14) is written as

min
X∈Ω

‖A(X)−G‖F , (15)

where A(X) = H1XHT
2 with G and X such that vec(G) = g, vec(X) = x where vec(X)

is the vector obtained by stacking the columns of the matrix X. The set Ω is such that

x = vec(x) ∈ Ω̃ ⊂ IRN ⇔ X ∈ Ω ⊂ IRn×p,

and M = N = np.
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5.1 Adding a Tikhonov regularization term

Consider, for a moment, the unconstrained linear discrete ill-posed problem

min
x
‖Hx− g‖2. (16)

One of the most popular regularization methods for solving (16) is due to Tikhonov [26].
In that case, problem (16) is replaced by the new one

min
x

(‖Hx− g‖2
2 + λ2‖Lx‖2

2), (17)

where L is a regularization operator chosen to obtain a solution with desirable properties
such as small norm or good smoothness. The minimizer of problem (17) is computed as
the solution of the following linear system

Hλx = HT g, where Hλ = (HT H + λ2LT L). (18)

In some practical problems as in image processing, the solution of problem (18) must
belong to some domain Ω̃. Furthermore, problem (18) may be regarded as a minimization
problem. Thus, instead of considering problem (18) we will consider hereafter the following
minimization problem with constraints

min
x∈eΩ ‖Hλx−HT g‖2. (19)

We assume here that H = H2⊗H1 and L = L2⊗L1 where H1, L1 are square matrices of
dimension n× n and H2, L2 are square matrices of dimension p× p. Then, problem (19)
is written as

min
X∈Ω

‖[(H2 ⊗H1)T (H2 ⊗H1) + λ2(L2 ⊗ L1)T
]
vec(X)− (H2 ⊗H1)T vec(G)‖2, (20)

where G and X are the matrices such that vec(G) = g, vec(X) = x. Using some properties
of the Kronecker product, problem (20) is then written as

min
X∈Ω

||Aλ(X)−E||F , (21)

where Aλ(X) = AXD − λ2CXB, with A = HT
1 H1, B = LT

2 L2, C = −LT
1 L1, D = HT

2 H2

and E = HT
1 GH2.

The parameter λ is a scalar to be determined. The L-curve criterion [11, 12, 18] and
the Generalized cross-validation (GCV) method [25] are robust techniques for determining
the optimal parameter λ.
When using the generalized cross-validation (GCV) method [25], the regularization pa-
rameter is chosen to minimize the GCV function

GCV (λ) =
||Hx̂λ − g||22

[tr(I −HH−1
λ HT )]2

=
||(I −HH−1

λ HT )g||22
[tr(I −HH−1

λ HT )]2
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where Hλ = HT H + λ2LT L.
Let H = H2 ⊗ H1 and L = L2 ⊗ L1 where H1, L1 and H2, L2 are of size n × n and

p× p, respectively and consider the Generalized Singular Value Decompositions (GSVD)
[27] of the pairs (H1, L1) and (H2, L2). Thus, there exist orthonormal matrices U1, U2,
V1, V2 and invertible matrices X1, X2 such that

UT
1 H1X1 = C1 = diag(c1,1, . . . , cn,1), ci,1 ≥ 0,

UT
2 H2X2 = C2 = diag(c1,2, . . . , cp,2), ci,2 ≥ 0,

and
V T

1 L1X1 = S1 = diag(s1,1, . . . , sn,1), si,1 ≥ 0,
V T

2 L2X2 = S2 = diag(s1,2, . . . , sp,2), si,2 ≥ 0.

Then the GSVD of the pair (H,L) is given by

UT HX = C = diag(c1, . . . , cN ), ci ≥ 0,
V T LX = S = diag(s1, . . . , sN ), si ≥ 0,

where U = U2 ⊗U1, V = V2 ⊗ V1, C = C2 ⊗C1, S = S2 ⊗ S1 and N = np. Therefore, one
can show that the expression of the GCV function is given by

GCV (λ) =

N∑

i=1

(
s2
i g̃i

c2
i + λ2s2

i

)2

( N∑

i=1

s2
i

c2
i + λ2s2

i

)2
, (22)

where g̃ = UT g.
The second method is the L-curve criterion [30]. The method suggests to plot the

L-curve (||H1X̂λHT
2 − G||F , ||L1X̂λLT

2 ||F ). Using the preceding GSVD decomposition of
the pair (H, L), it is not difficult to show the following relations

||H1X̂λHT
2 −G||2F = λ2

N∑

i=1

(
s2
i g̃i

c2
i + λ2s2

i

)2

||L1X̂λLT
2 ||2F =

N∑

i=1

(
sicig̃i

c2
i + λ2s2

i

)2.

(23)

The best regularization parameter should lie on the corner of the L-curve. The L-
curve method chooses the regularization parameter corresponding to the point on the
curve with maximum curvature. For more details on the numerical comparison between
different methods for the choice of the optimal regularization parameter see [26, 30]. In our
numerical tests, we used a robust method called the method of Triangles [13] to determine
the optimal regularization parameter.
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5.2 Experimental results

Numerical tests in image restoration are presented to show the performance of our proposed
method. Our codes were written with MATLAB 7.0 on an Intel Pentium workstation with
about 16 significant decimal digits. We constructed our tests by taking a known image
denoted by X̂ that consists of 256 × 256 grayscale pixel values in the range [0, 255]. We
set n = p = 256. Let x̂ denote the vector whose entries are the pixel values of the original
image X̂ and let H be the blurring matrix given as a Kronecker product H = H2 ⊗H1,
where H1 and H2 are Toeplitz matrices of dimension 256 × 256. The vector ĝ = Hx̂
represents the associated blurred and noise-free image. We generated a blurred and noisy
image g = ĝ + n, where n is a noise vector with normally distributed Gaussian random
entries with zero mean and with variance chosen such that the Signal to Noise Ratio
(SNR) has an appropriate (dB) value. We recall that the SNR is given by

SNR = 10 log10(
σ2bx
σ2
n

),

where σ2
n and σ2bx are the variance of the noise and the original image, respectively. The

performances of the proposed algorithm are evaluated by computing the Improvement in
Signal to Noise Ratio (ISNR) defined by

ISNR = 10 log10(
||x̂− g||22
||x̂− x||22

) = 10 log10(
||X̂ −G||2F
||X̂ −X||2F

),

where x = vec(X) g = vec(G) and X is the restored image. To evaluate the precision of
the estimates, the following relative error is also computed

Rer(X) =
||X̂ −X||2F
||X̂||2F

.

Now, we describe a way to choose the domains Ω1 and Ω2 given by (4) and (5). We have

Ω1 = {Y ∈ IRn×p : Lb ≤ Y ≤ Ub} (24)

and also
Ω2 = {Y ∈ IRn×p : ‖Y ‖F ≤ δ}. (25)

In our tests, the domain Ω2 was chosen such that δ = ||G||F , where G is the degraded
image. Since an image consists of grayscale pixel values in the range [0, 255], a first option
to choose the domain Ω1 is to define the lower bound-matrix Lb to be the zero matrix and
the upper bound-matrix as Ub = 255×1I, where 1I is the matrix whose entries are all equal
to 1. In order to define local smoothing constraints, another option to choose the domain
Ω1 is to determine the bound matrices Lb and Ub from the parameters that describe the
local properties of an image. In our tests, we used the local variance for local activity and
local maximum intensity value, see [1]. For the degraded image G, the local mean matrix
G and the local variance σ2

G are measured over a 3× 3 window given by

G(i, j) =
1
9

i+3∑

l=i−3

j+3∑

k=j−3

G(l, k), and σ2
G(i, j) =

1
9

i+3∑

l=i−3

j+3∑

k=j−3

[G(l, k)−G(l, k)]2.
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The maximum local variance over the entire image G, denoted by σ2
max is given by

σ2
max = max

1≤i,j≤256
σ2

G(i, j).

Let β > 0 be a positive constant, the matrices Lb and Ub defining the domain Ω1 are given
by

Lb(i, j) = max(G(i, j)− β
σ2

G(i, j)
σ2

max

, 0), and Ub(i, j) = G(i, j) + β
σ2

G(i, j)
σ2

max

. (26)

The constant β controls the tightness of the bounds. In the following examples, the do-
main Ω1 with the lower bound-matrix Lb and upper bound-matrix Ub, specified by (26),
is denoted by Ω1,β and the domain Ω1 with the lower bound-matrix Lb = 0 and the upper
bound-matrix is Ub = 255× 1I still denoted by Ω1.

Original Image Original Image

Figure 1: Original images: "Lena" (left) and "Cameraman" (right).

Example 1: In the first example, the original image is the "lena" image shown on
the left side of Figure 1. The blurring matrix H is given by H = H2 ⊗H1 ∈ IR2562×2562

,
where H1 = I256 is the identity matrix and H2 = [hij ] is the Toeplitz matrix of dimension
256× 256 given by

hij =
{

1
2r−1 , |i− j| ≤ r,

0, otherwise.

The blurring matrix H models a uniform blur. In our example we set r = 3. A white
random Gaussian noise of a specific variance is added to produce a blurred and noisy image
G, with SNR = 5dB, and is shown on the left side of Figure 3. The restoration of the image
from the degraded image is obtained in this example by solving the minimization problem
(21) using the SPG algorithm. The regularization matrix L = L2 ⊗ L1 ∈ IR2562×2562

is

12



chosen such that L1 = I256 and L2 is the tridiagonal matrix of size 256× 256 given by

L2 =




2 1
1 2 1

. . . . . . . . .
1 2 1

1 2




.

The projected domain in the minimization problem (21) was Ω = Ω1,β with β = 0.001.
In this example, we used the L-curve criterion to compute the optimal value of the pa-
rameter λ. The corner of the L-curve is localized by using the Triangle method [13].
Figure 2 shows the behavior of the L-curve and the localization of its corner. The value
of the optimal value of λ was λopt = 0.04. The obtained approximation X represents the

0 0.5 1 1.5 2 2.5 3 3.5
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||H
1
Xλ H

2
T−G||

F

||
L

1
X

λ
 L
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||

F

L−curve, the optimal value of λ=0.04

Figure 2: The L-curve with the optimal value located at the * point.

restored image and is represented on the right side of Figure 3. The relative error was
Rer(X) ' 1.1217 × 10−1 and the ISNR ' 2.9646. We tested the proposed algorithm
for various values of the band r of the matrix H2, for various values of the SNR and
for various values of the parameter β by choosing successively the projected domain Ω
in the minimization problem (21) equal to Ω1, Ω2 and Ω1

⋂
Ω2 where Lb, Ub and δ are

as specified, previously. We also tested the problem of the image restoration by solving
the minimization problem (15) and by using the Extended SPG algorithm with different
domains presented above. Some results are reported in Table 5.2. According to our nu-
merical tests, there is a slight advantage when adding the regularization term (21) and we
noticed that the quality of the restoration is highly dependent on the parameter β.

Example 2: In the second example, the original image is the "cameraman" image
from Matlab and is shown on the right side of Figure 1. The blurring matrix H is given
by H = H2 ⊗H1 ∈ IR2562×2562

, where H1 = I256 and H2 = [hij ] with [hij ] is the Toeplitz

13



Blurred and noisy Image Restored Image with λ=0.04

Figure 3: Degraded image (left) and restored image (right).

Problem (21) with regularization Problem (15) without regularization
Domain Ω β ISNR Rer(X) Domain Ω β ISNR Rer(X)

Ω1,β 0.1 2.6308 0.1210 Ω1,β 0.1 2.7977 0.1515
Ω1,β 2.5 0.2651 0.2094 Ω1,β 2.5 0.7961 0.2406
Ω1,β 10 0.4665 0.1993 Ω1,β 10 1.2526 0.2167
Ω1 −−− 0.5161 0.1969 Ω1 −−− 1.3026 0.2137
Ω2 −−− 1.4030 0.1608 Ω2 −−− 1.6851 0.1958

Ω1,β ∩ Ω2 0.01 2.7215 0.1188 Ω1,β ∩ Ω2 0.01 2.4000 0.1661
Ω1,β ∩ Ω2 10 1.3440 0.1627 Ω1,β ∩ Ω2 10 1.7560 0.1928

Table 2: SNR = 5dB.

matrix of dimension 256× 256 given by

hij =

{
1

σ
√

2π
exp

(
− (i−j)2

2σ2

)
, |i− j| ≤ r,

0, otherwise.

The blurring matrix H models a blur arising in connection with the degradation of digital
images by atmospheric turbulence blur. In our example we set σ = 3 and r = 2. As in
Example 1, a white random Gaussian noise of a specific variance is added to produce a
blurred and noisy image G with SNR = 5dB. The blurred and noisy image is shown
on the left side of Figure 5. The regularization matrix L is similar to the one given in
Example 1. The restoration of the image from the degraded one is obtained by solving the
minimization problem (21) using the Extended SPG algorithm and the domain Ω = Ω1,β,
with β = 0.1. In this example, we used the GCV method to find an estimation of the
optimal value of the parameter λ. The curve of the GCV is plotted in Figure 4 and the
optimal value of the parameter λ is λopt = 0.253. The restored image shown on the right
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Figure 4: The GCV curve with the optimal value located at the * point.

side of Figure 4 which was obtained with ISNR = 2.8605. The relative error in this case
is Rer ' 0.1430.

Blurred and noisy Image Restored Image with λ=0.253

Figure 5: Degraded image (left) and restored image (right).

6 Concluding remarks

We have proposed a global convex constrained optimization technique for solving large-
scale ill-conditioned Generalized Sylvester Equations (GSE). Our approach takes advan-
tages of the fast behavior of the SPG method and the robustness imposed by a combined
nonmonotone line search strategy.

We illustrate the advantages of our approach by solving some GSE that appear when
incorporating, in a natural way, left or right preconditioning strategies for solving several

15



classical PDE problems.
We also show the effectiveness of the new approach by restoring noisy and blurred

images. For this important application, we report experimental results with and without
using a Tikhonov regularization term. These results indicate that the Tikhonov regular-
ization term produces only a slight advantage when combined with the new technique,
proving that indeed our approach is suitable for solving ill-conditioned problems, as the
ones related to the presence of highly noised images. Concerning this application, our
approach shows some limitations when restoring highly blurred images. In the future,
we plan to study how to enrich the optimization strategy to deal effectively with highly
blurred images like the ones that appear, for example, in out-of-focus deblurring problems.
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