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Abstract

Nonlinear matrix equations arise in different scientific topics, such as applied statis-
tics and control theory, among others. Standard approaches to solve them include and
combine some variations of Newton’s method, matrix factorizations, and reduction to
generalized eigenvalue problems. In this paper we explore the use of secant methods in
the space of matrices, that represent a new approach with interesting features. For the
special problem of computing the inverse or the pseudoinverse of a given matrix, we
propose a specialized secant method for which we establish stability and q-superlinear
convergence, and for which we also present some numerical results. In addition, for
solving quadratic matrix equations, we discuss several issues, and present preliminary
and encouraging numerical experiments.

Keywords: Secant method, Newton’s method, nonlinear matrix problems, Schulz
method.

1 Introduction

The aim of this paper is to present a secant method for solving the following matrix
nonlinear problem:

given F : Cn×n → Cn×n find X∗ ∈ Cn×n such that F (X∗) = 0, (1)

where F is a Fréchet differentiable map. In what follows, we denote by F ′ the Fréchet
derivative of F .

This problem appears in different applications. For instances, given the matrices A,
B, and C, the quadratic matrix equation AX2 + BX + C = 0 arises in control theory
[1, 2, 6, 10]. Another application is to compute the inverse or the pseudoinverse of any
given matrix A. Indeed, if we find the root of F (X) = X−1 −A, we obtain the inverse of
A, and iterative schemes based on Newton’s method can be applied for finding the inverse
or the pseudoinverse of any matrix [14, 16]. For additional applications and further results
concerning nonlinear matrix problems see [9, 12].

A useful tool for solving equation (1) is the well-known Newton’s method:
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Algorithm 1 Newton’s method
1: Given X0 ∈ Cn×n

2: for k = 0, 1, · · · do
3: Solve F ′(Xk)Sk = −F (Xk)
4: Xk+1 = Xk + Sk

5: end for

Note that we need F ′ to find Sk in each step of Algorithm (1) and in order to obtain
F ′ we can use the Taylor series for F about X, F (X + S) = F (X) + F ′(X)S + R(S),
where R(S) is such that

lim
‖S‖→0

‖R(S)‖
‖S‖ = 0,

The Taylor series allows us to identify the application of F ′(X) on S which is required to
solve the linear equation of step (3) in Algorithm 1. In many cases, solving that linear
equation is computationally expensive (see, e.g., [17]).

As a general principle, whenever a Newton’s method is applicable, a suitable secant
method can be obtained, that hopefully have interesting features to exploit. For example,
in the well-known scalar case, the secant method does not require the derivative, and only
uses function evaluations. In that case (f : C→ C), the secant method can be written as
follow:

xk+1 = xk − f(xk)
ak

,

where ak satisfies that f(xk) = f(xk−1) + ak(xk − xk−1) for k ≥ 0, and x−1, x0 ∈ C are
given.

Moreover, an extension for nonlinear systems of equations (F : Cn → Cn), can be
written as

xk+1 = xk −AkF (xk)

where Ak ∈ Cn×n satisfies that F (xk) = F (xk−1)+Ak(xk−xk−1) for k ≥ 1, and the vector
x0 and the matrix A0 are given. There are infinitely many options for building the matrix
Ak at every iteration. In particular, the Broyden’s family of quasi-Newton methods avoids
the knowledge of the Jacobian and has produced a significant body of research for many
different problems (see, e.g., [5, 13]).

In this work we develop secant methods for nonlinear matrix problems that inherited,
as much as possible, the features of the classical secant methods in previous scenarios (e.g.,
scalar equations, nonlinear algebraic systems of equations). The rest of this document is
organized as follows. In section 2 we propose a general secant method for matrix problems
which is based on the standard secant method, and we also describe some of its variations.
In section 3 we propose a specialized secant method for approximating the inverse or the
pseudoinverse of a matrix. The global convergence and the stability are proved for this
specialized secant method. We present numerical experiments for computing the inverse
of some given nonsingular matrices, and for computing the pseudoinverse of a singular
matrix. In section 4 we consider the application of the general secant algorithms for
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solving quadratic matrix equations, and we also present some encouraging preliminary
numerical results. Finally, in section 5, we present some conclusions and perspectives.

2 A secant equation for matrix problems

A general secant method for solving (1) should be given by the following iteration

Xk+1 = Xk −A−1
k F (Xk), (2)

where X−1 ∈ Cn×n and X0 ∈ Cn×n are given, and Ak+1 is a suitable linear operator that
satisfies

Ak+1Sk = Yk, (3)

where Sk = Xk+1 −Xk and Yk = F (Xk+1)− F (Xk). Equation (3) is known as the secant
equation.

Once Xk+1 has been obtained, we observe in (3) that Ak+1 can be computed at each
iteration by solving a linear system of n2 equations. Therefore, there is a resemblance
with the scalar case, in which one equation is required to find one unknown. Similarly, we
notice that one n× n matrix is enough to satisfy the matrix secant equation (3). Hence,
we force the operator Ak to be a matrix of the same dimension of the step Sk and the
map-difference Yk, as in the scalar case. The proposed algorithm, and some important
variants, can be summarized as follows:

Algorithm 2 General secant method for matrix problems
1: Given X−1 ∈ Cn×n, X0 ∈ Cn×n

2: Set S−1 = X0 −X−1

3: Set Y−1 = F (X0)− F (X−1)
4: Solve A0S−1 = Y−1 . for A0

5: for k = 0, 1, · · ·until convergence do
6: Solve AkSk = −F (Xk) . for Sk

7: Set Xk+1 = Xk + Sk

8: Set Yk = F (Xk+1)− F (Xk)
9: Solve Ak+1Sk = Yk . for Ak+1

10: end for

We can generate the sequence Bk = A−1
k , instead of Ak, and obtain an inverse version

that solves only one linear system of equations per iteration:
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Algorithm 3 Inverse secant method
1: Given X−1 ∈ Cn×n, X0 ∈ Cn×n

2: Set S−1 = X0 −X−1

3: Set Y−1 = F (X0)− F (X−1)
4: Solve B0Y−1 = S−1 . for B0

5: for k = 0, 1, · · ·until convergence do
6: Set Sk = −BkF (Xk)
7: Set Xk+1 = Xk + Sk

8: Set Yk = F (Xk+1)− F (Xk)
9: Solve Bk+1Yk = Sk . for Bk+1

10: end for

Solving a secant method that deals with n×n matrices is the most attractive feature of
our proposal, and represents a sharp contrast with the standard extension of quasi-Newton
methods for general Hilbert spaces, (see e.g. [7, 15]), that in this context would involve
n2 × n2 linear operators to approximate the derivative of F . Clearly, dealing with n × n
matrices for solving the related linear systems significantly reduces the computational cost
associated with the linear algebra of the algorithm.

In order to discuss some theoretical issues of the proposed general secant methods, let
us consider the standard assumptions for problem (1): F : Cn×n → Cn×n is continuously
differentiable in an open and convex set D ⊆ Cn×n. There exists X∗ ∈ Cn×n and r > 0,
such that N(X∗, r) ⊂ D is an open neighborhood of radius r around X∗, F (X∗) = 0, and
F ′(X∗) is nonsingular, and F ′(X) ∈ Lipγ(N(X∗, r)).

We begin by noticing that the operator Ak does not approximate F ′(Xk) as in previous
scenarios due to dimensional discrepancies. Indeed, F ′(Xk) ∈ Cn2×n2

and Ak ∈ Cn×n.
However, fortunately, F ′(Xk)Sk and AkSk both live in Cn×n, which turns out to be the
suitable approximation since, using the secant equation (3), we have that

Ak+1Sk = Yk = F (Xk+1)− F (Xk) = F ′(Xk)Sk + R(Sk). (4)

Subtracting F ′(X∗)Sk in both sides of (4), and taking norms we obtain

‖Ak+1Sk − F ′(X∗)Sk‖ ≤ ‖F ′(Xk)− F ′(X∗)‖‖Sk‖+ ‖R(Sk)‖,

for any subordinate norm ‖ . ‖. Using now that F ′(X) ∈ Lipγ(N(X∗, r)), and dividing by
‖Sk‖ we have

‖Ak+1Sk − F ′(X∗)Sk‖
‖Sk‖ ≤ γ‖Ek‖+

‖R(Sk)‖
‖Sk‖ , (5)

where Ek = Xk −X∗ represents the error matrix.
Form this inequality we observe that, if convergence is attained, the left hand side

tends to zero when k goes to infinity, and so the sequence {Ak}, generated by Algorithm
2, tends to the Fréchet derivative, F ′(X∗), when they are both applied to the direction of
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the step Sk. Concerning local convergence, we have from Step 7 in Algorithm 2 that

Ek+1 = Ek −A−1
k F (Xk)

= Ek −A−1
k F ′(X∗)Ek −O(E2

k),

which implies that

‖Ek+1‖ ≤ ‖Ek −A−1
k (F ′(X∗)Ek)‖+ O(‖Ek‖2). (6)

Consequently, if Ak in our secant algorithms is such that A−1
k (F ′(X∗)Ek) approximates

Ek in a neighborhood of X∗, as expected, then ‖Ek+1‖ is reduced with respect to ‖Ek‖.
Inequalities (5) and (6), somehow, explain the convergence behavior we have observed in
our numerical results. In our next section, though, we will establish formally the stability
and also the local and q-superlinear convergence of the proposed secant methods for the
special case of computing the inverse or the pseudoinverse of a given matrix.

3 Special case: Inverse or pseudoinverse of a matrix

For computing the inverse of a given matrix A we will consider iterative methods to find
the root of

F (X) = X−1 −A, (7)

and for the sake of clarity let us assume, for a while, that A is nonsingular.
Newton’s method from an initial guess X0, for solving (7), also known as Schulz method

[16], is given by
Xk+1 = 2Xk −XkAXk. (8)

It has been established that if X0 = AT

‖A‖22
, then Schulz method possesses global convergence

[8, 18]. Moreover, if A does not have an inverse, it converges to the pseudoinverse (also
known as the generalized inverse) of A [8, 9, 18].

First, let us consider the general secant method applied to (7)

Xk+1 = Xk − Sk−1(F (Xk)− F (Xk−1))−1F (Xk)

= Xk − (Xk −Xk−1)(X−1
k −X−1

k−1)
−1(X−1

k −A). (9)

Let us assume that A is diagonalizable, that is, there exists a nonsingular matrix V such
that

V −1AV = Λ = diag(λ1, λ2 · · · , λn),

where λ1, λ2 · · · , λn are the eigenvalues of A, and let us define Dk = V −1XkV . From (9)
we have that

Dk+1 = Dk − (V −1Xk − V −1Xk−1)V V −1(X−1
k −X−1

k−1)
−1V V −1(X−1

k V −AV )

= Dk − (Dk −Dk−1)(D−1
k −D−1

k−1)
−1(D−1

k − Λ). (10)
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Note that if we choose X−1 and X0 such that D−1 = V −1X−1V and D0 = V −1X0V are
diagonal matrices, then all successive Dk are diagonal too, and in this case DiDj = DjDi

for all i, j. Therefore (10) can be written as

Dk+1 = Dk − (Dk −Dk−1)(D−1
k D−1

k−1Dk−1 −D−1
k−1D

−1
k Dk)−1(D−1

k − Λ)

= Dk − (Dk −Dk−1)(D−1
k D−1

k−1Dk−1 −D−1
k D−1

k−1Dk)−1(D−1
k − Λ)

= Dk − (Dk −Dk−1)((Dk−1Dk)−1(Dk−1 −Dk))−1(D−1
k − Λ)

= Dk + (Dk −Dk−1)(Dk −Dk−1)−1(Dk−1Dk)(D−1
k − Λ)

= Dk−1 + Dk −Dk−1ΛDk. (11)

Motivated by (11) we now consider the specialized secant method for (7),

Xk+1 = Xk−1 + Xk −Xk−1AXk, (12)

that avoids the inverse matrix calculations per iteration associated with iteration (9).
Notice the resemblance between (12) and Schulz method for solving the same problem.
Therefore, in what follows (12) will be denoted as the secant-Schulz method. Our next
result establishes that if A is diagonalizable and the two initial guesses are chosen properly,
then the secant-Schulz method converges locally and q-superlinearly to the inverse of A.

Theorem 3.1 Let A ∈ Cn×n be a nonsingular diagonalizable matrix, that is, there exists
a nonsingular matrix V such that

V −1AV = Λ = diag(λ1, λ2 · · · , λn),

where λ1, λ2 · · · , λn are the eigenvalues of A. Let X−1 and X0 be such that V −1X−1V
and V −1X0V are diagonal matrices. Then the secant-Schulz method converges locally and
q-superlinearly to the inverse of A.

Proof. Let us define Dk = V −1XkV for all k ≥ −1. From (12) we have that

Dk+1 = Dk−1 + Dk −Dk−1ΛDk. (13)

Since D−1 and D0 are diagonal matrices, then all successive Dk are diagonal too, and in
this case DiDj = DjDi for all i, j. Moreover, since Dk = diag(d1

k, d
2
k, · · · dn

k) we see from
(13) that

di
k+1 = di

k−1 + di
k − di

k−1d
i
kλi, for all 1 ≤ i ≤ n, (14)

where (14) represents n uncoupled scalar secant iterations converging to 1/λi, 1 ≤ i ≤ n.
Indeed, subtracting 1/λi in both sides of (14) and letting ei

k = di
k − 1/λi we have that

ei
k+1 = di

k + di
k−1 − di

k−1d
i
kλi − 1/λi

= −λi(di
kd

i
k−1 − di

k/λi − di
k−1/λi + 1/λ2

i )

= −λi(di
k − 1/λi)(di

k−1 − 1/λi)

= −λie
i
ke

i
k−1. (15)
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From (15) we conclude that each scalar secant iteration (14) converges locally and q-
superlinearly to 1/λi. Therefore, equivalently [5], there exists a sequence {ci

k}, for each
1 ≤ i ≤ n, such that ci

k > 0 for all k, limk→∞ ci
k = 0, and

|ei
k+1| ≤ ci

k|ei
k|. (16)

Using (16) we now obtain in the Frobenius norm

‖Dk+1 − Λ−1‖2F =
n∑

i=1

(ei
k+1)

2 ≤
n∑

i=1

(ci
k)2(ei

k)2 ≤ nĉ2
k

n∑

i=1

(ei
k)2 ≤ nĉ2

k‖Dk − Λ−1‖2F , (17)

where ĉk = max1≤i≤n{ci
k}.

Finally, we have that

‖Xk+1 −A−1‖F = ‖V V −1(Xk+1 −A−1)V V −1‖F

= ‖V (Dk+1 − Λ−1)V −1‖F

≤ κF (V )‖Dk+1 − Λ−1‖F

≤ κF (V )
√

nĉk‖Dk − Λ−1‖F

= κF (V )
√

nĉk‖V −1V (Dk − Λ−1)V −1V ‖F

≤ κF (V )2
√

nĉk‖Xk −A−1‖F , (18)

where κF (V ) is the Frobenius condition number of V . Hence, the secant-Schulz method
converges locally and q-superlinearly to the inverse of A. 2

When A has no inverse, we can prove that the secant-Schulz method converges locally
and q-superlinearly to the pseudoinverse of A, denoted by A†. For this case, let A ∈ Cm×n

be a matrix of rank r, and let us assume that its singular value decomposition is given by

A = U

(
Σ 0
0 0

)
V ∗, (19)

where U ∈ Cm×m, V ∈ Cn×n are unitary matrices and Σ = diag(σ1, σ2, · · ·σr) where
σ1, σ2 · · · , σr are the singular values of A.

Corollary 3.1 Let A ∈ Cm×n be a matrix of rank r, and let X−1 and X0 be such that

V ∗X−1U =
(

D−1 0
0 0

)
and V ∗X0U =

(
D0 0
0 0

)
where V ∗, U are defined in (19) and

D−1, D0 ∈ Cr×r are diagonal matrices. Then the secant-Schulz method converges locally
and q-superlinearly to the pseudoinverse of A.

Proof. From iteration (12) and defining
(

Dk 0
0 0

)
= V ∗XkU, with Dk ∈ Cr×r, we have

that (
Dk+1 0

0 0

)
=

(
Dk−1 + Dk −Dk−1ΣDk 0

0 0

)
. (20)
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Since X−1 and X0 are such that D−1 and D0 are diagonal matrices then, using the same
arguments as in the proof of Theorem 3.1, we obtain that

Dk+1 = Dk−1 + Dk −Dk−1ΣDk,

represents r uncoupled scalar secant iterations that converges locally and q-superlinearly
to 1/σi, 1 ≤ i ≤ r, that is,

‖Dk+1 − Σ−1‖2
F ≤ rĉ2

k‖Dk − Σ−1‖2
F , (21)

where ĉk = max1≤i≤r{ci
k} and the sequences {ci

k} are such that ci
k > 0 and limk→∞ ci

k = 0
for each 0 ≤ i ≤ r. Finally using the same arguments used for obtaining (18) we have that

‖Xk+1 −A†‖F = ‖V V ∗(Xk+1 −A†)UU∗‖F

= ‖V
(

Dk − Σ−1 0
0 0

)
U∗‖F

≤ √
mn‖Dk+1 − Σ−1‖F

≤ √
mn

√
rĉk‖Dk − Σ−1‖F

=
√

mn
√

rĉk‖V ∗V
(

Dk − Σ−1 0
0 0

)
U∗U‖F

≤ mn
√

rĉk‖Xk −A†‖F .

2

It is important to note that Theorem 3.1 implies the well-known Dennis-Moré condition
[4, 5]

lim
k→∞

‖AkSk − F ′(X∗)Sk‖
‖Sk‖ = 0,

that establishes the most important property of the sequence {Ak} generated by the
secant-Schulz method.

We now discuss the stability of our specialized secant method for the inverse matrix.
First, let us recall the suitable definition from [9]. The fixed point iteration Yk+1 = G(Yk)
is stable in a neighborhood of a fixed point Y∗ if the Fréchet derivative G′(Y∗) has bounded
powers.

Theorem 3.2 The secant-Schulz method generates a stable iteration.

Proof. The secant-Schulz method, as a fixed point iteration, can be obtained setting

Yk+1 =
(

Xk+1

Xk

)
, Y∗ =

(
A−1

A−1

)

and

G(Yk) = G

(
Xk

Xk−1

)
=

(
Xk−1 + Xk −Xk−1AXk

Xk

)
.
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Therefore, the map we need to study is given by

G

(
W
Z

)
=

(
Z + W − ZAW

W

)
,

for W and Z in Cn×n. Now we will use Taylor series for identifying G′:

G(Y + P ) = G(Y ) + G′(Y )P + R(P ), (22)

where P = (E1, E2)T , E1 and E2 are perturbation matrices, and R is such that

lim
‖P‖→0

‖R(P )‖
‖P‖ = 0.

We have that

G

(
W + E1

Z + E2

)
=

(
((Z + E2) + (W + E1))− (Z + E2)A(W + E1)

W + E1

)

=




(Z + W − ZAW ) + (E1 + E2 − ZAE1 − E2AW )− E2AE1

W + E1


 . (23)

Comparing equations (22) and (23) we conclude that

G′(Y )P =

(
E1 + E2 − ZAE1 − E2AW

E1

)
. (24)

When Y = Y∗ = (A−1, A−1)T from (24) we obtain that

G′(Y∗)P =

(
0

E1

)
=

(
0 0

I 0

) (
E1

E2

)
.

Therefore, G′(Y∗) is an idempotent matrix, and the iteration is stable. 2

We now present a set of experiments to compute the inverse of a given matrix using
the secant-Schulz iterative method. We choose as initial guesses X−1 = αAT /‖A‖2

2 and
X0 = βAT /‖A‖2

2, with α, β ∈ (0, 1]. When A is symmetric and positive definite we can
also choose X−1 = αI and X0 = βI with α > 0 and β > 0. For these initial choices global
convergence can be established. Indeed, from (12) we obtain that

‖I −AXk+1‖2 ≤ ‖I −AX−1‖αk
2 ‖I −AX0‖βk

2 (25)

where αk > 0 and βk > 0. Note that the matrices I −AX−1 and I −AX0 are symmetric,
and for this case (25) can be written as

‖I −AXk+1‖2 ≤ ρ(I −AX−1)αkρ(I −AX0)βk

9



where ρ(B) represents the spectral radius of the matrix B. Finally using similar arguments
to the ones used to prove the global convergence of Schulz method [8, 18], we can prove
that ρ(I −AX−1) < 1 and ρ(I −AX0) < 1.

In our implementation we stop all considered algorithms when

‖Xk −X∗‖/‖X∗‖ ≤ 0.5D − 14.

All experiments were run on a Pentium Centrino Duo, 2.0GHz, using Matlab 7. We
report the number of required iterations (Iter) and the relative error (‖Xk −X∗‖/‖X∗‖)
when the process is stopped. For our first experiment we consider the symmetric and
positive definite matrix poisson from the Matlab gallery with n = 400. We compare the
performance of the secant-Schulz method with the Newton-Schulz method described in
(8). For the secant-Schulz method we choose X−1 = 0.5 ∗ I, and X0 = AT /‖A‖2

2, and
for the Newton-Schulz we choose the same X0. We report the results in Table 1, and the
semilog of the relative error in Figure 1.

Table 1: Performance of secant-Schulz and Newton-Schulz for finding the inverse of A =
gallery(’poisson’,20) when n = 400, X−1 = 0.5 ∗ I, and X0 = AT /‖A‖2

2.

Method Iter ‖Xk −X∗‖/‖X∗‖
Secant-Schulz 18 1.95e-15
Newton-Schulz 22 1.87e-15

0 2 4 6 8 10 12 14 16 18
10

−15

10
−10

10
−5

10
0

Secant−Schulz relative error

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

Newton−Schulz relative error

Figure 1: Semilog of the relative error for finding the inverse of A =
gallery(’poisson’,20) when n = 400, X−1 = 0.5 ∗ I, and X0 = AT /‖A‖2

2.

For our second experiment we consider the nonsymmetric matrix grcar from the Mat-
lab gallery with n = 200. For the secant-Schulz method we choose X−1 = 0.2 ∗AT /‖A‖2

2,
and X0 = AT /‖A‖2

2, whereas for the Newton-Schulz we choose X0 = AT /‖A‖2
2. We com-
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pare the performance of the secant-Schulz method with the Newton-Schulz. We report
the results in Table 2.

Table 2: Performance of secant-Schulz and Newton-Schulz for finding the inverse of A =
gallery(’grcar’,200) with X−1 = 0.2 ∗AT /‖A‖2

2 and X0 = AT /‖A‖2
2.

Method Iter ‖Xk −X∗‖/‖X∗‖
Secant-Schulz 14 2.69e-15
Newton-Schulz 10 4.32e-16

As in the Newton-Schulz method, the secant-Schulz method also converges to the
pseudo-inverse of any given matrix. For our next experiment we consider the rectangular
matrix cycol from the Matlab gallery with n = [100 10] to compute its pseudoinverse,
starting from the same initial choices of the previous experiment. We report the results
in Table 3.

Table 3: Performance of secant-Schulz and Newton-Schulz for finding the pseudo-inverse
of A = gallery(’cycol’,n,8) with X−1 = 0.2 ∗AT /‖A‖2

2 and X0 = AT /‖A‖2
2.

Method Iter ‖Xk −X∗‖/‖X∗‖
Secant-Schulz 9 1.85e-15
Newton-Schulz 8 1.86e-15

In all the experiments we observe the typical q-superlinear behavior of the proposed
secant-Schulz method as compared with the q-quadratic behavior associated with the
Newton-Schulz method.

4 Quadratic matrix equation

We now consider the application of Algorithms 2 and 3 for solving quadratic matrix equa-
tions of the form AX2 +BX +C = 0, where A, B, and C are n×n matrices. For a recent
globalized implementation of Newton’s method see [11]. For our secant algorithms we set
F (X) = AX2 + BX + C and seek roots of F . For this special case, the general secant
algorithm can be simplified as follows:

11



Algorithm 4 Secant method for quadratic problems
1: Given X−1 ∈ Cn×n, X0 ∈ Cn×n

2: Set S−1 = X0 −X−1

3: Solve W0S−1 = A(X2
0 −X2

−1) . for W0

4: Set A0 = W0 + B
5: for k = 0, 1, · · ·until convergence do
6: Solve AkSk = −F (Xk) . for Sk

7: Set Xk+1 = Xk + Sk

8: Solve Wk+1Sk = A(X2
k+1 −X2

k) . for Wk+1

9: Set Ak+1 = Wk+1 + B
10: end for

and the inverse version of the secant algorithm can be written as follows:

Algorithm 5 Inverse secant method for quadratic problems
1: Given X−1 ∈ Cn×n, X0 ∈ Cn×n

2: Set S−1 = X0 −X−1

3: Set Y−1 = A(X2
0 −X2

−1) + B(X0 −X−1)
4: Solve B0Y−1 = S−1 . for B0

5: for k = 0, 1, · · ·until convergence do
6: Set Sk = −BkF (Xk)
7: Set Xk+1 = Xk + Sk

8: Set Yk = A(X2
k+1 −X2

k) + BSk

9: Solve Bk+1Yk = Sk . for Bk+1

10: end for

We now present some experiments to illustrate the advantages of using Algorithms 4
and 5 for solving quadratic matrix equations. For that we choose two examples already
studied and described in [10] and [11]. We choose as initial guesses X−1 = 0.1I and X0 =

βI, as in [2] for Newton’s method, where β =
(
‖B‖F +

√
‖B‖2

F + 4‖A‖F ‖C‖F

)
/(2‖A‖F ).

In our implementation we stop the algorithms when Res(Xk) ≤ n∗eps, where Res(Xk) =
‖F (Xk)‖F /(‖A‖F ‖Xk‖2

F + ‖B‖F ‖Xk‖F + ‖C‖F ) and eps = 2.2D− 16. This stopping cri-
terion is also suggested in [11]. These experiments were also run on a Pentium Centrino
Duo, 2.0GHz, using Matlab 7. We report the number of required iterations (Iter) and the
value of Res(Xk) when the process is stopped. For our first experiment we consider the
problem described by the following matrices A = I,

B =
( −1 −1

1 −1

)
, C =

(
0 1
−1 0

)
. (26)

Problem (26) has a solvent at X∗ = I.
We compare the performance of the direct secant method (Algorithm 4) with the

inverse secant method (Algorithm 5). We report the results in Table 4.
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Table 4: Performance of secant and inverse secant for solving problem (26).

X0 Method Iter Res(Xk)

βI Secant 10 4.15e-17
βI Inverse secant 11 2.22e-17

10I Secant 13 2.22e-17
10I Inverse secant 14 3.14e-17

105I Secant 15 1.57e-17
105I Inverse secant 16 5.02e-19

1010I Secant 15 2.74e-19
1010I Inverse secant 16 2.22e-17

For our second experiment we consider the problem described in [10] which is given by
the following matrices A = I, B = tridiag[−10, 30,−10] except B(1, 1) = B(n, n) = 20,
and C = tridiag[−5, 15,−5], for n = 100. We compare the performance of the direct
secant method (Algorithm 4) with the inverse secant method (Algorithm 5). We report
the results in Table 5 and Figure 2. We observe in both experiments that the secant
algorithms show a robust behavior converging from initial guesses either close or far away
from the solution. In contrast, as reported in [11], Newton’s method requires an exact line
search globalization strategy to avoid the increase in number of iterations for convergence.

0 2 4 6 8 10 12 14 16 18
10

−20

10
0

10
20

Secant relative residual

0 2 4 6 8 10 12 14 16 18
10

−20

10
0

10
20

Inverse secant relative residual

Figure 2: Semilog of the relative residual for solving our second quadratic experiment
when n = 100 and X0 = 105I.
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Table 5: Performance of secant and inverse secant for solving our second quadratic exper-
iment.

X0 Method Iter Res(Xk)

βI Secant 12 1.62e-14
βI Inverse secant 18 9.93e-15

102I Secant 15 3.76e-15
102I Inverse secant 18 1.23e-14

105I Secant 17 1.92e-15
105I Inverse secant 17 2.2e-14

1010I Secant 18 1.71e-15
1010I Inverse secant 16 7.55e-15

1020I Secant 15 1.62e-14
1020I Inverse secant 17 2.05e-14

5 Conclusions and perspectives

Whenever a Newton’s method is applicable to a general nonlinear problem, a suitable
secant method should be obtained for the same problem. In this work we present an
interpretation of the classical secant method for solving nonlinear matrix problems. In
the special case of computing the inverse of a given matrix, we present and fully analyze
a specialized version, the secant-Schulz method, that resembles the well-known Schulz
method which is a specialized version of Newton’s method.

For solving quadratic matrix problems, we explore the use of the direct and also the
inverse secant method. Our preliminary numerical experiments show the expected q-
superlinear convergence, and indicate that these secant schemes seems to have interesting
properties that remain to be established.

Finally, we hope that our specialized secant methods, for solving some simple cases,
stimulate further extensions and research for solving additional and more complicated
nonlinear matrix problems.
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