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Abstract

We study the geometrical properties of the Frobenius condition number on the
cone of symmetric and positive definite matrices. This number, related to the cosine
of the angle between a given matrix and its inverse, is equivalent to the classical 2-
norm condition number, but has a direct and natural geometrical interpretation. In
particular we establish sharp bounds for the ratio between the angle that a matrix
form with the identity ray and the angle that the inverse of that matrix form with
the identity ray. These bounds allow us to show new lower bounds for the condition
number, that only require the trace and the Frobenius norm of the matrix.

Key words: Condition number, cones of matrices, Frobenius norm.

1 Introduction

The space of square real n×n matrices can be equipped with the Frobenius inner product
defined by

< A,B >F = tr(AT B),

for which we have the associated norm that satisfies ‖A‖2
F =< A, A >F . In here, tr(A) =∑

i aii is the trace of the matrix A. In this inner product space, the Frobenius condition
number of positive definite matrices has a geometrical interpretation that cannot be shared
by the extensively used 2-norm condition number. From that geometry several results will
follow that are useful for practical aspects like estimating the condition number of a given
matrix. In particular we explore in this work the relationship between the angle that a
matrix forms with its inverse and the Frobenius condition number of the matrix. In this
context, as we will see later, the angle that any matrix form with the identity ray, αI for
α > 0, plays a very important role.
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This work has been motivated by the rich geometrical structure of the positive semidef-
inite (PSD) cone of matrices and specially by the discussion presented by Tarazaga [9, 10],
in which, among other results, we learned that the identity ray is identified as the “center
ray” of the cone, therefore representing the natural reference in the cone, for studying
the location of a given matrix. For example, all the rank one symmetric matrices (i.e.
matrices of the form xxt, for x 6= 0) form the same angle with I, and moreover they are
the “farthest away” from it, among all the matrices in the cone. These rank one matrices
have only one positive eigenvalue. Any other singular matrix with at least two nonzero
eigenvalues is “closer” to the identity matrix than the rank one matrices, but still they
are at the boundary of the cone. An additional interesting discussion on the structure of
the PSD cone can be found in [4], and more recently for a general setting in [5, 6].

On the other hand, the identity ray represents the best conditioned matrices in the
cone, and any well-conditioned matrix should form a “small” angle with it. Moreover,
a very ill-conditioned matrix is “almost” singular (near the boundary), and so, it should
form a “large” angle with I. Similarly, in that case the inverse matrix is also very ill-
conditioned and as a consequence it should also form a “large” angle with I. Is it possible
to conclude that an ill-conditioned matrix and its inverse form a “large” angle among
them? We believe that the results in this work add understanding for answering this
question.

Clearly, all the comments in the last two paragraphs carry a significant geometrical
intuition. However, some of them became formal facts in [9] and [10]. The main purpose
of this work is to continue the formal study of these geometrical ideas, and specially to get
practical bounds, as sharp as possible, for the angle between the inverse of a given matrix
and I, and also for the Frobenius condition number.

2 Notation and basic results

Let us denote by Sn the set of symmetric real matrices of order n, and by PDn the matrices
in Sn that are positive definite. Notice that PDn is the interior of PSD, which is a closed
convex cone. We are interested in PDn, and not in PSD, because our main concern is to
study the properties of the Frobenius condition number, which is not defined for singular
matrices.

The Frobenius inner product allow us to define the cosine of the angle between two
given real n× n matrices as

cos(A,B) =
< A, B >F

‖A‖F ‖B‖F
.

In particular, for a given matrix A in PDn,

cos(A, I) =
tr(A)

‖A‖F
√

n
, (1)

and hence

cos(A, I) cos(A−1, I) =
tr(A)tr(A−1)

n κF (A)
, (2)
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where κF (A) = ‖A‖F ‖A−1‖F . Note that for any nonsingular symmetric matrix A, using
Cauchy-Schwarz inequality, we have

n = tr(I) =< A, A−1 >F ≤ ‖A‖F ‖A−1‖F = κF (A), (3)

and so, n is a lower bound for κF (A). Taking advantage of the basic properties of any
inner product space, we can characterize the distance between n and κF (A).

Lemma 2.1 If A is a nonsingular symmetric matrix, then

κF (A) = n +
1
2

[‖A−A−1‖2
F − (‖A‖F − ‖A−1‖F )2

]
. (4)

Proof. Since
‖A−A−1‖2

F =< A, A >F + < A−1, A−1 >F −2n,

and
(‖A‖F − ‖A−1‖F )2 =< A, A >F + < A−1, A−1 >F −2κF (A),

then [‖A−A−1‖2
F − (‖A‖F − ‖A−1‖F )2

]
= −2n + 2κF (A),

and the result follows.

Notice that for any symmetric matrix such that A−1 = A (e.g. Householder orthogonal
transformations) we have that κF (A) = n. Moreover, from the triangle inequality it follows
that (‖A‖F −‖A−1‖F )2 ≤ ‖A−A−1‖2

F , and hence (4) is coherent with (3). It is also worth
noticing that an equality similar to (4) can hardly be obtained for the classical 2-norm
condition number. Nevertheless, recalling the usual notation κ2(A) = ‖A‖2‖A−1‖2, it is
well-known that

κF (A)/n ≤ κ2(A) ≤ κF (A), (5)

which combined with Lemma 2.1 yields the following inequality for the 2-norm condition
number

1 +
1
2n

D(A,A−1) ≤ κ2(A) ≤ n +
1
2
D(A,A−1),

where D(A,A−1) =
[‖A−A−1‖2

F − (‖A‖F − ‖A−1‖F )2
]
.

Using Cauchy-Schwarz inequality again, we can now establish a simple but useful
lemma.

Lemma 2.2 If A is a square matrix in PDn, then

tr(A) ∗ tr(A−1) ≥ n2. (6)

Proof. Since A ∈ PDn then the square roots A1/2 and A−1/2 are well defined, and

n2 = tr2(I) =< A1/2, A−1/2 >2
F≤ ‖A1/2‖2

F ‖A−1/2‖2
F = tr(A) ∗ tr(A−1).

The next result will play an important role in the rest of this note.
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Lemma 2.3 If A is a square matrix in PDn, then

1
κ2(A)

≤ cos(A,A−1) ≤ cos(A, I) cos(A−1, I). (7)

Proof. Combining (2) and (6) we obtain

cos(A, I) cos(A−1, I) ≥ n

κF (A)
, (8)

or equivalently
n

κF (A) cos(A, I)
≤ cos(A−1, I) ≤ 1. (9)

In (9) equality is attained everywhere when A = I.
Moreover,

cos(A,A−1) =
tr(I)
κF (A)

=
n

κF (A)
, (10)

that combined with (9), yields

cos(A,A−1) ≤ cos(A,A−1)/ cos(A, I) ≤ cos(A−1, I) ≤ 1. (11)

In here, we use the fact that for any given matrices A and B in PDn, the maximum
possible angle between them is π/2, i.e., 0 ≤ cos(A, B) ≤ 1, and so tr(AB) ≥ 0 (see e.g.
Iusem and Seeger [5, 6]). Recalling now that for any A in PDn

‖A‖2 ≤ ‖A‖F ≤
√

n ‖A‖2,

we obtain
κ2(A) ≤ κF (A) ≤ n κ2(A),

and hence, (9) can be written as

1
κ2(A)

≤ 1
κ2(A) cos(A, I)

≤ cos(A−1, I) ≤ 1. (12)

Finally, we can conclude from (10), (11) and (12) that

1
κ2(A)

≤ cos(A,A−1) ≤ cos(A, I) cos(A−1, I),

and the proof is complete.

Notice that the inequality in Lemma 2.3 is sharp when A = I. Notice also that using
similar arguments to the ones used to obtain (11) we have

cos(A,A−1) ≤ cos(A, I) ≤ 1,

which means, together with (11) , that the angle between A and A−1 is larger than the
angle between A and I or between A−1 and I.
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3 Main result

Lemma 2.3 together with the last observations accounts for some of the geometrical prop-
erties of the Frobenius condition number. From (5) we know that κF (A) is equivalent to
κ2(A). Nevertheless, κF (A) can be associated with the geometrical intuition described in
Section 1.

In order for this intuitive line of arguments to be formal and complete, we need to
study the relationship between cos(A−1, I) and cos(A, I). Our next theorem establishes a
bound that adds understanding to this relationship.

Theorem 3.1 If A is a square matrix in PDn, then

1/
√

n ≤ cos(A, I)
cos(A−1, I)

≤ √
n. (13)

Proof. Using (1) for A and A−1 and recalling that tr(A) =
∑n

i=1 λi and ‖A‖2
F =

∑n
i=1 λ2

i ,
we have

cos2(A, I)/ cos2(A−1, I) =
(
∑n

i=1 λi)2(
∑n

i=1 1/λ2
i )

(
∑n

i=1 1/λi)2(
∑n

i=1 λ2
i )

,

where
0 < λ1 ≤ . . . ≤ λn < ∞

are the eigenvalues of A.
Consider now the vector λ ∈ <n with entries λi, and consider also the vector y ∈ <n

with entries 1/λi, for i = 1, . . . , n. Using these two vectors, we can write

cos2(A, I)/ cos2(A−1, I) = (λT e)2 (yT y)/(λT λ) (yT e)2, (14)

where e is the vector of all ones. Using Cauchy-Schwarz inequality and the fact that
‖x‖2 ≤ ‖x‖1 for any vector x ∈ <n, it follows that

1 ≤ ‖λ‖2
1/‖λ‖2

2 = (λT e)2/‖λ‖2
2 ≤ ((λT λ) (eT e))/‖λ‖2

2 = eT e = n,

and also that

1 ≥ ‖y‖2
2/‖y‖2

1 = (yT y)/(yT e)2 ≥ (yT y)/(‖y‖2
2 ‖e‖2

2) = 1/(eT e) = 1/n.

Therefore, substituting the last two inequalities in (14) we obtain that

1/n ≤ cos2(A, I)/ cos2(A−1, I) ≤ n,

and the result is established.

Combining (13) and (12) we obtain that, for any matrix in PDn,

1
cos(A, I)

≤ √
n cos(A−1, I) ≤ √

n,
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In here, equality is attained at any extreme ray of the PSD cone, as established by Tarazaga
[10]. Moreover, combining Lemma 2.3 and Theorem 3.1 we obtain the following inequality

cos(A,A−1) ≤ √
n cos2(A, I),

which together with (3) yields the following new practical lower bound for the Frobenius
condition number κF (A)

κF (A) ≥ max
(

n,

√
n

cos2(A, I)

)
. (15)

4 Combining and comparing with other bounds

From Wolkowicz and Styan [11] (Theorem 2.1), we have the following inequalities related
to a given matrix A with extreme real eigenvalues λmin(A) and λmax(A)

m− sp ≤ λmin(A) ≤ m− s

p
,

and
m +

s

p
≤ λmax(A) ≤ m + sp,

where p =
√

(n− 1), m = tr(A)/n and s2 = (‖A‖2
F /n) − m2. If m − sp > 0, and A is

positive definite, then the following upper bound is also obtained in [11] (Corollary 2.1)

κ2(A) =
λmax(A)
λmin(A)

≤ m + sp

m− sp
.

However, even if A is positive definite, m − sp might not be positive. In that case, it is
clear that

κ2(A) ≤ m + sp

λmin(A)
,

which of course requires the knowledge (or an approximation) of λmin(A). Under the
additional assumption that tr(A)2 > (n − 1)tr(A2), some other bounds are obtained in
[11]; and assuming that the determinant of A is also available additional upper bounds
are established in [7].

On the other direction, for symmetric and positive definite matrices, and without any
additional assumption, it is also established in [11] (Corollary 2.3) that

κ2(A) ≥ 1 +
2s

m− s
p

. (16)

Moreover, If n is odd they proved a slightly sharper result

κ2(A) ≥ 1 +
2sr

m− s
p

,

where r = n/
√

(n2 − 1). Clearly, r tends to 1 when n increases.
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Using (5), all these bounds can be combined with the results of the previous sec-
tions to produce practical bounds for κF (A). In particular, combining (5), (15), and the
Wolkowicz-Styan (WS) bound (16) we present the following practical new bound

κF (A) ≥ max

(
n,

√
n

cos2(A, I)
, (1 +

2s

m− s
p

)

)
. (17)

Notice, that the computational cost for obtaining (15), (16), or (17) is the same, since
only tr(A) and ‖A‖F are required.

We now present some numerical experiments to evaluate and compare the accuracy
of the new bounds. In Figure 1 we compare the value of κF (A) with (15), with the WS
bound given by (16), and with (17) for two different matrices B: B = eeT + λI where e
is the vector of all ones in the first case, and B = RRT + λI where R is a random square
matrix in the second case (R is built with the rand function in MATLAB). In both cases
the matrices are of dimension 500× 500.
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Figure 1: Comparison of different bounds for the Frobeniuis condition number of the
500×500 matrices B = eeT +λI (left) and of B = RRT +λI (right) vs lambda in a loglog
scale.

In Figure 1 we observe that for matrices that form a small angle with an extreme ray
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of the PSD cone, the WS bound is sharper than the new bound (15). However, away from
an extreme ray of the PSD cone, (15) is sharper than WS. For instances, in the second
(right) experiment (15) is sharper than WS for all λ, including the ill-conditioned and also
the well-conditioned matrices that are obtained when λ > 0 increases. Therefore, the best
option out of the ones considered here is the combined bound (17) which is obviously a
winner at the same computational cost.

5 Final remarks and perspectives

In recent years the art of building inverse preconditioners has received much attention; see
[3] for a survey and [8] for a full description of the topic. The geometrical understanding,
obtained from the preceding results, can possibly lead to new approaches for building
inverse preconditioners.

As a first attempt consider the following equality

‖I −AQ‖2
F = ‖I‖2

F + ‖AQ‖2
F − 2tr(AQ)

= ‖I‖2
F + ‖AQ‖2

F − 2 cos(AQ, I)‖AQ‖F ‖I‖F

= ‖I‖2
F + ‖AQ‖2

F − 2‖AQ‖F ‖I‖F + 2(1− cos(AQ, I))‖AQ‖F ‖I‖F

= (‖I‖F − ‖AQ‖F )2 + 2(1− cos(AQ, I))‖AQ‖F ‖I‖F .

If we now replace Q by Qk, a sequence of matrices converging to A−1, the term 1 −
cos(AQk, I) measures the weak convergence of AQk to I. Indeed the (strong) convergence
in any inner product space is typically decomposed into the convergence of the norms
(‖I‖F − ‖AQk‖F )2 and the weak convergence (1− cos(AQk, I))‖AQk‖F ‖I‖F , that can be
estimated by 1− cos(AQk, I) when ‖Qk‖F is bounded. In that case we would consider the
objective function

1− cos(AQ, I) = (‖AQ‖F

√
n− tr(AQ))/‖AQ‖F

√
n

and then it would be convenient to study the expression ‖AQ‖F
√

n− tr(AQ). Of course,
to guarantee the convergence of the sequence Qk we must impose some scaling condition
at each step; otherwise we could observe convergence of cos(AQk, I) to 1 while the norm
of Qk grows consistently. Summing up, we could obtain an approximation to the inverse
of the matrix A as the (inexact) solution of any of the two following problems

• The weak convergence problem

min
Q

(‖AQ‖F

√
n− tr(AQ)

)

• The strong convergence problem

min
‖AQ‖F =

√
n

(‖AQ‖F

√
n− tr(AQ)

)
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The first formulation is an optimization problem without constraint whereas the second
one is a constrained problem. The scaling constraint can be relaxed classically by adding
a penalization term or, in an iterative process, by scaling Qk at each iteration.

Finally, it is also worth mentioning that if the matrix A is not available but matrix-
vector products with it are easy to evaluate, we can still recover all the practical bounds
previously described. For example, if the products Aei are computed for all canonical
vectors ei, then tr(A) can be recovered as follows

tr(A) =
n∑

i=1

eT
i Aei,

and

‖A‖2
F = tr(A2) =

n∑

i=1

(Aei)T Aei.

Unfortunately, if n is large, these formulas are of limited practical use. Additional ideas
for computing traces for large scale problems, without the explicit knowledge of A, can be
found in [1, 2].
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