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Abstract

We develop free-derivative preconditioned residual methods for solving large-scale nonlinear systems
of equations. The new scheme is based on a variable implicit preconditioning technique associated to the
globalized spectral residual method. The new scheme is robust and allows to compute numerically the
steady state of the bi-dimensional and incompressible Navier-Stokes equations (NSE), that we consider
here in both primary variables and streamfunction-vorticity formulations. The results are encouraging
and agree with those reported in the literature.

Keywords: Nonlinear systems of equations, residual methods, globalization strategies, preconditioning,
Navier-Stokes equations.

1 Introduction

The art of preconditioning has become a widely used approach to accelerate numerical methods for solving
linear as well as non-linear problems. For linear systems, it is widely developed and very well understood.
However, the art of preconditioning iterative methods for nonlinear problems remains a challenge, and it
is not so well understood.

The emergence of non-monotone residual methods, as the one introduced by Barzilai and Borwein
in optimization [1, 11, 24], and its globalized versions which enhances its robustness and effectiveness
[19, 20, 21, 25], gives the possibility of solving efficiently large scale nonlinear problems, incorporating in
a natural way a preconditioning strategy. Non-monotone globalization strategies for nonlinear problems
have become popular in the last few years. These strategies make it possible to define globally convergent
algorithms without monotone decrease requirements. The main idea behind non-monotone strategies is
that, frequently, the first choice of a trial point, along the search direction hides significant information
about the problem structure and that such knowledge can be destroyed by the decrease imposition.

In this work we adapt and extend the ideas introduced in [19, 20] for large-scale nonlinear problems
like the ones that appear in the solution of the steady fluid flow problem. In particular, we add a
preconditioning strategy fully described in [9]. The so-called lid driven cavity problem, which corresponds
to the computation of the evolutive (or the steady) flow of the bi-dimensional incompressible Navier-
Stokes equations (NSE) on a rectangular cavity, displays classical benchmarks for testing nonlinear solvers,
because of the amount of numerical solutions refereed, and also of the numerical difficulty of the problem.
To compute steady states, two approaches are commonly considered: on one hand, the time-dependent
methods which consist in computing the steady state as the equilibrium solution of the evolutive NSE (for
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Reynolds numbers that are lower than that of the bifurcation value) by time marching scheme and, on the
other hand, the steady methods which consist in solving the steady NSE by fixed point or Newton-like
schemes. It is a well-known fact that the solution of the steady NSE is more difficult since it requires very
robust schemes, especially as the Reynolds number Re increases. The literature on that topic is very rich
from, e.g., the relaxation schemes proposed by Crouzeix [10] to the more recent defect-correction methods,
see e.g. [30] and the references therein. However, these methods are very closely related to the structure
of the NSE and use a linearization of the equation at each step.

Our aim in this article is to compute the solution of the steady NSE by an implicit preconditioned
version of the spectral residual method, with globalization. The method we introduce here is general and
uses only the solution of the linear part of the equation that can be obtained efficiently with a fast solver
(e.g., FFT, and multigrid).

The article is organized as follows. First, in section 2, after recalling the definition of the globalization
strategy for the spectral gradient scheme, we derive our new algorithm combining the dynamical and
the optimization approach. Then, in Section 3, we adapt the discretization of the steady bi-dimensional
incompressible Navier-Stokes equations to the framework of the nonlinear scheme. Finally, in section 4,
as a numerical illustration, we present the solution of steady NSE for different Reynolds numbers (up to
Re = 5000). We solve the problem in primary variable as well as in stream function-vorticity formulation.
Our results agree with the ones in the literature and show the robustness of the proposed method.

2 The basic algorithm

In a general framework, let us consider the nonlinear system of equations

F (x) = 0, (1)

where F : <n → <n is a continuously differentiable mapping. This framework generalizes the nonlinear
systems that appear for example after discretizing the steady state models for fluid flows, to be discussed
later in this work.

For solving (1), some new iterative schemes have recently been presented that use in a systematic way
the residual vectors as search directions [19, 20]. i. e., the iterations are defined as

xk+1 = xk ± λk F (xk), (2)

where λk > 0 is the step-length and the search direction is either F (xk) or −F (xk) depending on which
one is a descent direction for the merit function

f(x) = ‖F (x)‖2
2 = F (x)T F (x). (3)

These ideas become effective, and competitive with Newton-Krylov ([2, 3, 18]) schemes for large-scale
nonlinear systems, when the step lengths are chosen in a suitable way. The convergence of (2) is attained
when it is associated with a free-derivative non-monotone line search, fully described in [20], and that will
be discussed in the forthcoming subsections.

For the choice of the step-length λk > 0, there are many options for which convergence is guaranteed.
We propose to use the non-monotone spectral choice that has interesting properties, and is defined as the
absolute value of

λk =
sT
k−1sk−1

sT
k−1yk−1

, (4)

where sk−1 = xk − xk−1, and yk−1 = F (xk) − F (xk−1). Obtaining the step length using (4) requires a
reduced amount of computational work, accelerates the convergence of the process, and involves the last
two iterations in such a way that incorporates first order information into the search direction [1, 11, 24, 15].
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2.1 The preconditioned version

In order to present the preconditioned version of (2) we extend the ideas discussed in [21], for unconstrained
minimization, to the solution of (1). The well-known and somehow ideal Newton’s method for solving (1),
from an initial guess x0, can be written as

xk+1 = xk − J−1
k F (xk), (5)

where Jk = J(xk), and J(x) is the Jacobian of f evaluated at x.
Recently [21] a preconditioned scheme, associated to the gradient direction, was proposed to solve

unconstrained minimization problems. For solving (1) the iterates associated with the preconditioned
version of (2) are given by

xk+1 = xk + λkdk, (6)

where dk = ±Ck F (xk), Ck is a nonsingular approximation to J−1
k , and the scalar λk is given by

λk = (λk−1)
dT

k−1F (xk−1)
dT

k−1yk−1
. (7)

In (6), if Ck = I (the identity matrix) for all k, then dk = ±F (xk), λk coincides with (4), and so the
method reduces to (2). On the other hand, if the sequence of iterates converges to x∗, and we improve the
quality of the preconditioner such that C(xk) converges to J−1(x∗) then, as discussed in [9], λk tends to
1 and we recover Newton’s method, which possesses fast local convergence under standard assumptions
[12]. In that sense, the iterative scheme (6) is flexible and allows intermediate options, by choosing
suitable approximations Ck, between the identity matrix and the inverse of the Jacobian matrix. For
building suitable approximations to J−1(xk)F (xk) we will test implicit preconditioning schemes that do
not require the explicit computation of Ck, and that will be described in Section 2.3.

2.2 Globalization strategy

In order to guarantee convergence of the preconditioned residual algorithm previously described, from any
initial guess, we need to add a globalization strategy. This is certainly an interesting feature, specially
when dealing with highly nonlinear flow problems and high Reynolds numbers. To avoid the derivatives
of the merit function, which are not available, we will adapt the recently developed strategy of La Cruz
et al [20] to our preconditioned version.

Assume that {ηk} is a sequence such that ηk > 0 for all k ∈ IN and

∞∑

k=0

ηk = η < ∞. (8)

Assume that 0 < γ < 1 and 0 < σmin < σmax < ∞. Let M be a positive integer. Let τmin, τmax be
such that 0 < τmin < τmax < 1.

Given x0 ∈ IRn an arbitrary initial point, the algorithm that allows us to obtain xk+1 starting from xk

is given below.

Global Preconditioned Residual (GPR) Algorithm.

Step 1.

• Choose σk such that |σk| ∈ [σmin, σmax] (e.g., the spectral coefficient)

• Build Ck (an inverse preconditioner)

• Compute f̄k = max{f(xk), . . . , f(xmax{0,k−M+1})}.
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• Set d ← −σkCk F (xk).

• Set α+ ← 1, α− ← 1.

Step 2.
If f(xk + α+d) ≤ f̄k + ηk − γα2

+‖d‖2
2 then

Define dk = d, αk = α+, xk+1 = xk + αkdk

else if f(xk − α−d) ≤ f̄k + ηk − γα2−‖d‖2
2 then

Define dk = −d, αk = α−, xk+1 = xk + αkdk

else
choose α+new ∈ [τminα+, τmaxα+], α−new ∈ [τminα−, τmaxα−],
replace α+ ← α+new, α− ← α−new

and go to Step 2.

Remark 1. As we will see later, the coefficient σk will be intended to be an approximation of the quotient
‖F (xk)‖2/〈J(xk)F (xk), F (xk)〉. This quotient may be positive or negative (or even null).
Remark 2. As discussed in [20], the algorithm is well defined, i. e., the backtracking process (choosing
α+new and α−new) is guaranteed to terminate successfully in a finite number of trials. A backtracking
scheme is described in [20]. Moreover, global convergence is also established in [20]. Indeed, if the sym-
metric part of the Jacobian of F at any xk is positive (or negative) definite for all k, then the sequence
{f(xk)} tends to zero.

2.3 Inverse preconditioning schemes

We will adapt the recent work by Chehab and Raydan [9] for approximating the Newtons’s direction using
an Ordinary Differential Equation (ODE) model, to the nonlinear system (1) within the framework of
the iterative global preconditioned residual algorithm of the previous subsection. For that, we develop an
automatic and implicit scheme to approximate directly the preconditioned direction dk at every iteration,
without an a priori knowledge of the Jacobian of F , and involving only a reduced and controlled amount
of storage and computational cost. As we will discuss later, this new scheme avoids as much as possible the
cost of any calculations involving matrices, and will also allow us to obtain asymptotically the Newton’s
direction by improving the accuracy in the ODE solver.

The method we introduce here starts from the numerical integration of the Newton flow aimed at
computing the root of F as the stable steady state of

dx

dt
= −(∇F (x))−1F (x). (9)

The value ‖F (x)‖ is decreasing along the integral curves and converges at an exponential rate to the root
of F . Introducing the decoupling

dx

dt
= −z (10)

(∇F (x))z = F (x), (11)

we see that the algebraic condition that links z to x is in fact a preconditioning equation. In order to relax
its resolution, a time derivative in z is added as

dx

dt
= −z, (12)

ε
dz

dt
= F (x)−∇F (x)z. (13)
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Here ε > 0 is a given parameter, generally chosen to be equal to 1. This last system allows to compute
numerically the root of F by an explicit time marching scheme since the steady state is asymptotically
stable, see [9] for more details. Let tk be discrete times, we denote by xk ' x(tk) and by zk ' z(tk). The
application of the simple forward Euler method to (12) reads

xk+1 = xk + (tk+1 − tk)zk, (14)

zk+1 = zk +
(tk+1 − tk)

ε

(
F (xk)−∇F (xk)zk

)
. (15)

Remark 1 As stated above, we want to avoid the computation of the Jacobian matrix, so ∇F (x)z is
classically approached by a finite difference scheme

∇F (x)z ' F (x + τz)− F (x)
τ

,

for a small given real number τ .

Notice that the dynamics of the differential system (12) can be very slow and, as proposed in [9], a way to
speed-up the convergence to the steady state is to introduce artificially two scales in time by computing
for every discrete time tk an approximation of the steady state of the equation in z. More precisely we write

Step 1- With optimization method 1, compute zk εdz
dt

= F (xk)− F (xk + τz)− F (xk)
τ

as the approximation of the steady state of z(0) = zk−1.

Step 2- With optimization method 2
compute xk+1 from xk by xk+1 = xk + αkzk

The preconditioning lies on the accuracy for solving step 1. As optimization method #1 we proposed in
[9] to apply some iteration of Cauchy-like schemes that we describe in the next subsection. As optimization
scheme # 2, that defines the time step αk = tk+1 − tk, we used the spectral gradient method. Promising
results were obtained on some classical optimization problems. However, the resolution of steady NSE
necessitates a more robust scheme for the time marching of xk. The globalized scheme GPR described
above becomes crucial in practical cases. We now present the general form of the scheme

Implicit GPR Method (IGPR)

Step 1- With Cauchy-like minimization, compute zk εdz
dt

= F (xk)− F (xk + τz)− F (xk)
τ

as the approximation of the steady state of z(0) = zk−1.

Step 2- with GPR compute xk+1 from xk by xk+1 = xk + αkzk

2.4 Generalized Cauchy methods

The computation of a steady state by an explicit scheme can be speeded up by enhancing the stability
domain of the scheme since it allows the use of larger time steps. In that sense the accuracy of a time
marching scheme is not a priority. A simple way to derive more stable methods is to use parametrized
one-step schemes and to fit the parameters, not for increasing the accuracy such as in the classical schemes
(Heun’s, Runge Kutta’s), but for improving the stability. For example, in [5, 8] it was proposed a method
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for computing iteratively fixed points with larger descent parameter starting from a specific numerical
time scheme. More precisely, this method consists in integrating the differential equation





dU
dt

= F (U),

U(0) = U0,

(16)

by the p- steps scheme
Given X0

For k=0, ...
Set K1 = F (Xk)

for m=2,..p
set Km = F (xk + ∆tKm−1)

Set Xk+1 = Xk + ∆t
∑p

i=0 αiKi

Here
∑p

i=1 αi = 1.

Minimizing parameters. Classically, the convergence can be speeded-up by computing at each
iteration the step-length in order to minimize the Euclidian norm of the current residual: this gives rise
to the variant of the Cauchy scheme [7]. Of course the minimizing parameter becomes harder to compute
as p increases. We list hereafter the optimal values of the parameters for p = 1, 2, 3

• p = 1 (Cauchy method)

αk
i = 1,∆tk =

< Ark, rk >

‖Ark‖2

• p = 2 (Enhanced Cauchy 1 (EC1) see [8, 9])
We set

a = ‖rk‖2, b =< Ark, rk >, c = ‖Ark‖2, d =< A2rk, rk >, e =< A2rk, Ark >, f =< A2rk, A2rk >,

∆tk =
fb− ed

fc− e2 , α1 = 1− ∆tke− d

∆t2kf
, α2 = 1− α1

• p = 3 (Enhanced Cauchy 2 (EC2))
We set

a = ‖Ark‖2, b = ‖A2rk‖2, c = ‖A3rk‖2, d =< Ark, rk >, e =< A2rk, rk >,

f =< A3rk, rk >, g =< A2rk, Ark >, hh =< A3rk, Ark >, ii =< A3rk, A2rk >

∆tk = −hh ii e− g ii f + hh f b + d ii2 − d c b + g c e
(g2 c + hh2 b− a c b + a ii2 − 2 hh ii g)

α1 = (ii f − ii ∆tk hh + (∆tk)2 ii2 − (∆tk)2 b c− e c + ∆tk g c)
((∆tk)2 (−b c + ii2))

α2 = −(∆tk ii f − hh (∆tk)2 ii− dt e c + (∆tk)2 g c− f b + ∆tk hh b + ii e− ii ∆tk g)
((∆tk)3 (−b c + ii2))

α3 = 1− α1 − α2
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3 Application to the solution of the Steady 2D lid driven cavity

3.1 The problem

The equilibrium state of a driven square cavity is described by the steady Navier-Stokes which, in primary
variables, can be written as

− 1
Re

∆U +∇P + (U · ∇U) = f in Ω =]0, 1[2, (17)

∇ · U = 0, in Ω =]0, 1[2,
U = g, on ∂Ω.

Here U = (u, v) is the velocity field, P is the pressure and f is the external force. For our applications
we will consider the so-called driven cavity case so f = 0 and the fluid is driven by a proper boundary
condition. We denote by Γi i = 1, .., 4 the sides of the unit square Ω as follows: Γ1 is the lower horizontal
side, Γ3 is the upper horizontal side, Γ2 is the left vertical side, and Γ4 is the right vertical side.

BR1

BR2

TL1

BL1

Primary (central) vortex

(G 3) U=g, V=0

(G 4) U=V=0

(G 1) U=V=0

(G 2) U=V=0

Figure 1: The lid driven cavity - Schematic localization of the mean vortex regions

We distinguish two different driven flow, according to the choice of the boundary conditions on the
velocity. More precisely we have

• g(x) = 1 : Cavity A (lid driven cavity)

• g(x) = (1− (1− 2x)2)2 : Cavity B (regularized lid driven cavity)

Anyway, as described bellow, we shall rewrite the driven cavity test problem in terms of stream function
and vorticity.

3.2 Discretization and implementation in primary variable

3.2.1 Discretization

The discretization is performed on staggered grids of MAC type in order to verify a discrete Inf-Sup (or
Babushka-Brezzi) condition which guarantees the stability, see [23]. Taking N discretization points on
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each direction of the pressure grid, we obtain the linear system




νAuU + BxP + NLu(U, V )− F1 = 0
νAvV + ByP + NLv(U, V )− F2 = 0
Bt

xU + Bt
vV = 0,

(18)

where U, V ∈ IRN(N−1), P ∈ IRN×N . (18) is then a square linear system of 2×N(N −1)+N2 unknowns.

3.2.2 Implementation

The discrete problem is given by




νAuU + BxP + NLu(U, V )− F1 = 0
νAvV + ByP + NLv(U, V )− F2 = 0
Bt

xU + Bt
vV = 0,

(19)

or equivalently
F(U, V, P ) = 0,

with the obvious notation.

Now, let S be the Stokes solution operator defined by

S(F,G, 0) 7→ (U, V, P )

where (U, V, P ) solves the Stokes problem




νAuU + BxP = F
νAvV + ByP = G
Bt

xU + Bt
vV = 0.

(20)

Let us introduce the functional G
G((U, V, P ) = S(F(U, V, P )).

The scheme consists in applying the dynamical preconditioned spectral gradient method to the differential
system {

dX
dt

= −Z,

εdZ
dt

= G(X)−HZ,
(21)

where X = (U, V, P ) and where H is an approximation to the gradient of G(X).

3.3 The ω − ψ formulation

One of the advantage of the ω − ψ formulation is that the NSE are decoupled into two problems: A
convection diffusion equation and a Poisson problem. In particular we can use the FFT for solving the
linear problems, as pointed out hereafter.

3.3.1 The formulation

The ω−ψ is obtained by taking the curl of the NSE [14, 23]. Letting ω = ∂u
∂y
− ∂v

∂x
and u = ∂ψ

∂y
, v = −∂ψ

∂x
hence ∆ψ = ω. We have the equations

− 1
Re

∆ω +
∂φ

∂y

∂ω

∂x
− ∂φ

∂x

∂ω

∂y
= 0 (22)

∆ψ = ω (23)
ω(x, 0) = ω0(x). (24)
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The boundary conditions on ω are derived by the discretization of ∆ψ on the boundaries. With the
conditions on u and v we have

ω(x, 0, t) = ∂2ψ
∂y2 (x, 0, t) on Γ1

ω(x, 1, t) = ∂2ψ
∂y2 (x, 1, t) on Γ3

ω(0, y, t) = ∂2ψ
∂x2 (0, y, t) on Γ2

ω(1, y, t) = ∂2ψ
∂x2 (1, y, t) on Γ4.

So, since ψ∂Ω = 0 and u = ∂ψ
∂y

, v = −∂ψ
∂x

, we obtain by using Taylor expansions

ωi,0 = ψi,1 − 8ψi,2

2h2

ωi,N+1 = −ψi,N−1 + 8ψi,N − 6hβ(ih)
2h2

ω0,j = ψ1,j − 8ψ2,j

2h2 i

ωN+1,j = −ψN−1,j + 8ψN,j

2h2 .

(25)

Here β(x) denotes the boundary condition function for the horizontal velocity at the boundary Γ3. The
boundary conditions on ψ are homogeneous Dirichlet BC, and the operators are discretized by second
order centered schemes on a uniform mesh composed by N points in each direction of the domain of
step-size h = 1

N + 1. The total number of unknowns is then 2N2.
The boundary conditions on ω are iteratively implemented according to the relations (25-25), making the
finite differences scheme second order accurate.

3.3.2 Implementation

With the formulae (25-25) we can compute the boundary condition of ω. We denote by ∂h
x(ψ), ∂h

y (ψ) and
by ∂h

∆(ψ) the contributions of the boundary conditions to the discretization operators of ∂x, ∂y and −∆.
The problem to solve is

F1(ω, ψ) =
1

Re

(
Aω + ∂h

∆(ψ)
)

+ Dyψ
(
Dxω + ∂h

x(ψ)
)
−Dxψ

(
Dyω + ∂h

y (ψ)
)

= 0, (26)

F2(ω, ψ) = Aψ + ω = 0. (27)

Here A is the discretization matrix of −∆, Dx and Dy are the discretization matrices of ∂x and ∂y

respectively. The problem to solve is then

F (ω, ψ) =
(

F1(ω, ψ)
F2(ω, ψ)

)
=

(
0
0

)
.

We set for convenience X = (ω, ψ). Now, as for the primary variables formulation and returning to the
dynamical system framework of the method, we set

G(ω, ψ) =
(

A−1F1(ω, ψ)
A−1F2(ω, ψ)

)
,

and we consider the evolutionary system
{

dX
dt

= −Z,

εdZ
dt

= G(X)−HZ,
(28)
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where HZ is an approximation of the gradient of G(X) at Z.

Here A is the classical pentadiagonal finite differences matrix of the Laplace operator on a square and
the solution of linear systems with A can be cheaply done by using fast solvers such as FFT or multigrid.
We will use in this paper the FFT.

4 Numerical results

4.1 General implementation of the algorithm

We now list the information (data) required by the IGPR method:

• The positive integer number M .

• The parameters γ and ηk.

• The initial value of the descent parameter α0.

• The merit function. We use the Euclidian norm of the residual ‖F (X)‖.
• The accuracy of the global method: The solution is considered accurate when ‖F (X)‖ < 1.e− 6.

• The accuracy imposed for solving the preconditioning equation

F (xk + τz)− F (xk)
τ

− F (xk) = 0,

that is characterized by

– the choice of the optimization method 1. In our implementation we have used the Enhanced
Cauchy 2 as discussed above.

– the number τ . We set τ = 1.e− 8.

– the number of iteration nprec that can vary at each step. We choose to increase nprec as the
residual rk decreases for improving the preconditioning near the solution as follows (adaptive
preconditioning)

adaptive computation of nprec

nprec0 given
for k = 0, · · · (until convergence)
if ‖rk‖ < 1.e− 1
nprec = ceil ∗ (−log10(‖rk‖) + 1) ∗ nprec0.

4.2 Computation of Steady states of NSE

We present hereafter the numerical solution of the steady state of the bi-dimensional driven cavity for
different Reynolds numbers. Our results agree with those in the literature [6, 4, 13, 16, 17, 22, 26, 27, 28](see
figures and tables below) and to prove the robustness of the resolution method, we take as initial guess
the solution of the Stokes problem which becomes farther from the steady state as the Reynolds number
increases. In here we pay special attention on the solution of NSE in the ω −Ψ formulation. However let
us mention that the scheme applies also to NSE in primary variables (U − P ), the linear solver being a
Stokes solver. The crucial practical point is to have at the disposal a fast solver for the linear problems:
FFT or multigrid for ω −Ψ formulation and Multigrid Uzawa [6] for the U − P formulation.

As pointed out in the following results, the globalization strategy is important while the residual is not
small enough. Furthermore, the preconditioning makes sense “close to the solution”. For that reason we
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choose to activate the preconditioning progressively as the residual decreases by increasing the number of
inner iterations in the solution of the preconditioning step (step 1 of the scheme). This allows us to obtain
a fast convergence at the end while saving computational time at the beginning.

We observe that the number of outer iterations increases with the Reynolds number but not so much
with the dimension of the problem. In all cases, the first part of the convergence process is devoted to
“maintaining” the iterates in a neighborhood of the solution. All the computations have been made using
Matlab c© software on a 2Ghz dual core PC with 2 ram’s Gbytes.

4.2.1 Cavity B

We now present the parameters of the scheme that we used for solving the flow in cavity B for the stream
function-vorticity formulation of NSE. N is the number of discretization point in each direction of the
domain. We give in the following table the values of the parameters of the method

Re N γ M nprec0 Prec. Method Adapted nprec α0

1000 127 9.e2 M=2 4 Enhanced Cauchy 2 yes 1.e1
2000 127 9.e11 2 4 Enhanced Cauchy 2 yes 1.e4
5000 255 9.e2 2 4 Enhanced Cauchy 2 yes 1.e4

4.2.2 Cavity A

Re N γ M nprec0 Prec. Method Adapted nprec α0

1000 127 9.102 M=2 4 Enhanced Cauchy 2 yes 1.e1
3200 255 9.e6 2 4 Enhanced Cauchy 2 yes 1.e4

The results are reported on Figures 2, 3, and 4; and special values of the solution are given in Tables
1, 2, and 3 where we also compare them with those in the literature.

We note that the main effort of the iterative method is done at the beginning of the iterations, while
the globalization is acting to stabilize the iterates. This phenomenon is amplified as the Reynolds number
Re becomes large. An acceleration of the convergence is obtained when the residual is small enough
since nprec increases. The shape of the solutions are identical with that of the literature, such as in
[6, 4, 13, 14, 16, 17, 22, 26, 27, 28]; particularly, the special values agree.
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Figure 2: Convergence history (residual norm versus iterations): First row, Cavity B, Re=1000 (left), and
Re=2000 (right); second row, cavity A, Re=1000 (left), and Re=3200 (right).
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Figure 3: Steady NSE, Re=5000, N=255. Residual norm versus iterations (top left), isolines of the vorticity
(top right), isolines of the kinetic energy (bottom left), and median values of the horizontal and of the
vertical velocity (bottom right).
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Figure 4: Steady NSE, Cavity B, Re=5000, N=255 isolines of the stream function.

13



4.3 Solution of NSE in primary variables

We now present the numerical results on the solution of the steady NSE in primary variables. We change
the value of γ during the iterations in order to increase the non-monotonicity of the IGPR as follows

if ‖rk‖ < 1.e− 3 then γ = 0.9

We now present the numerical solution of the cavity B problem for Re = 400 and Re = 2000. The level
curves of the pressure, the vorticity, the kinetic energy and the stream function agree with those in the
literature. Notice that the number of iterations for convergence are less than the ones needed for the same
example but using the stream-vorticity formulation. However the solution of the linear problem requires
more effort since the Stokes problem needs to be solved at each evaluation of the nonlinear functional,
while the solution of Poisson problems is needed when considering the ω −Ψ formulation for NSE.

Re N γ0 M nprec0 Prec. Method Adapted nprec α0

400 63 1.e4 M=2 5 Enhanced Cauchy 2 yes 1.e2
1000 127 1.e4 2 4 Enhanced Cauchy 2 yes 1.e4
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Figure 5: Convergence history (residual norm versus iterations), Cavity B, N=63, Re=400 (left) and
N=127, Re=1000 (right).

5 Concluding remarks

We have presented a scheme that takes into account only the linear part of the nonlinear equation for
solving steady fluid flows, making our method a very general one. The efficiency of the scheme is increased
when a fast solver is used for the linear problem. The results we obtain on the numerical solution of NSE
show that the proposed method is robust; as it has been already established, it is harder to solve directly
the steady NSE than to compute the steady state by time marching schemes applied to the evolutionary
equation. The new method is also flexible since the choice of the preconditioning step is completely free.
We would like to stress out that the preconditioned globalized spectral residual method can be applied to a
large number of scientific computing topics, especially when no (simple) preconditioning can be built, such
as in Computational Fluid Dynamics (CFD), and also in numerical linear algebra when solving Riccati ma-
trix equations or some other nonlinear matrix problems. These are topics that deserve further investigation.

14



Acknowledgements. This work was supported by SIMPAF project from INRIA futurs.

References

[1] J. Barzilai and J. M. Borwein (1988). Two-point step size gradient methods, IMA Journal of Numerical
Analysis, 8, 141–148.

[2] P. Brown, and Y. Saad (1990). Hybrid Krylov methods for nonlinear systems of equations, SIAM
Journal on Scientific Computing 11, 450–481.

[3] P. Brown, and Y. Saad (1994). Convergence theory of nonlinear Newton-Krylov algorithms, SIAM
Journal on Optimization 4, 297–330.

[4] M. Ben-Artzi, J.-P. Croisille, D. Fishelov and S. Trachtenberg (2005). A pure-compact scheme for the
streamfunction formulation of Navier-Stokes equations, Journal Comp. Phys., 205, no 2, 640–664.

[5] C. Brezinski and J.-P. Chehab (1998). Nonlinear hybrid procedures and fixed point iterations, Num.
Func. Anal. Opt., 19 , 465–487.

[6] C.-H. Bruneau and C. Jouron (1990). An efficient Scheme for solving Steady incompressible Navier-
STokes equations, Journal Comp. Phys. 89, 389–413.
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