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1 Introduction

We consider the application of Dykstra’s algorithm for solving the following opti-
mization problem

min
x∈Ω

‖x0 − x‖, (1)

where x0 is a given point, Ω is a closed and convex set, and ‖z‖2 = 〈z, z〉 defines a
real inner product in the space. The solution x∗ is called the projection of x0 onto Ω
and is denoted by PΩ(x0). Dykstra’s algorithm for solving (1) has been extensively
studied since it fits in many different applications (see [5, 21, 22, 23, 27, 28, 29, 32,
34, 41, 42, 45]).

For simplicity, we consider the case

Ω = ∩p
i=1Ωi, (2)

where Ωi are closed and convex sets in IRn, for i = 1, 2, . . . , p, and Ω 6= ∅. Moreover,
we assume that for any z ∈ IRn the calculation of PΩ(z) is not trivial; whereas,
for each Ωi, PΩi

(z) is easy to obtain as in the case of a box, an affine subspace, or
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a sphere. For the not feasible case (i.e., when Ω = ∅) the behavior of Dykstra’s
algorithm is treated in [2, 6, 37].

Dykstra’s alternating projection algorithm is a cyclic scheme for finding asymp-
totically the projection of a given point onto the intersection of a finite number
of closed convex sets. Roughly speaking, it iterates by projecting in a clever way
onto each of the convex sets individually. The algorithm was originally proposed
by Dykstra [20] for closed and convex cones in the Euclidean space IRn, and later
extended by Boyle and Dykstra [7] for closed and convex sets in a Hilbert space.
It was rediscovered by Han [30] using duality theory, and the linear rate of conver-
gence was established by Deutsch and Hundal [18] for the polyhedral case (see also
[19, 43, 44]).

Dykstra’s algorithm belongs to the general family of alternating projection meth-
ods, that dates back to von Neumann [46] who treated the problem of finding the
projection of a given point in a Hilbert space onto the intersection of two closed
subspaces. Later, Cheney and Goldstein [15] extended the analysis of von Neu-
mann’s alternating projection scheme to the case of two closed and convex sets.
In particular, they established convergence under mild assumptions. However, the
limit point need not be the closest in the intersection. Therefore, the alternating
projection method, proposed by von Neumann, is not useful for problem (1). For-
tunately, Dykstra [20] found the clever modification of von Neumann’s scheme for
which convergence to the solution point is guaranteed. For a complete discussion
on alternating projection methods see Deutsch [17].

Dykstra’s algorithm has been extended in several different ways. Gaffke and
Mathar [24] proposed, via duality, a family of simultaneous Dykstra’s algorithm in
Hilbert space. Later Iusem and De Pierro [37] established the convergence of the
simultaneous version considering also the inconsistent case in the Euclidean space
IRn. Bauschke and Borwein [2] further analyzed Dykstra’s algorithm for two sets,
that appears frequently in applications and in particular generalized the results in
[37]. In [36] it was established that for linear inequality constraints the method of
Dykstra reduces to the method proposed by Hildreth [33] in his pioneer work on
dual alternating projections. See also [40] for further analysis and extensions.

Dykstra’s algorithm has also been generalized by Deutsch and Hundal [35] to an
infinite family of sets, and also to allow a random ordering, instead of cyclic, of the
projections onto the closed convex sets. More recently, it has also been generalized
by Bregman et al. [9] to avoid the projection onto each one of the convex sets in
every cycle. Instead, projections onto either a suitable half space of the intersection
of two half spaces are used. Further results concerning the connection between
Bregman distances and Dykstra’s algorithm can be found in [3, 4, 8, 14]. For the
advantages of projecting cyclically onto suitable half spaces, see the previous work
by Iusem and Svaiter [38, 39].

A computational experiment comparing Dykstra’s algorithm and the Halpern-
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Lions-Wittmann-Bauschke algorithm [1] on linear best approximation test problems
can be found in [12].

2 Formulations

2.1 Dykstra’s algorithm

Dykstra’s algorithm solves (1)–(2) by generating two sequences: the iterates {xk
i }

and the increments {yk
i }. These sequences are defined by the following recursive

formulae:
xk

0 = xk−1
p ,

xk
i = PΩi

(xk
i−1 − yk−1

i ), i = 1, 2, . . . , p,

yk
i = xk

i − (xk
i−1 − yk−1

i ), i = 1, 2, . . . , p,

(3)

for k = 1, 2, . . . with initial values x0
p = x0 and y0

i = 0 for i = 1, 2, . . . , p.

Remarks

1. For the sake of simplicity, the projecting control index i(k) used in (3) is
the most common one: i(k) = k mod p + 1, for all k ≥ 0. However, more
advanced control indices can also be used, as long as they satisfy some minimal
theoretical requirements (see e.g., [35]).

2. The increment yk−1
i associated with Ωi in the previous cycle is always sub-

tracted before projecting onto Ωi. Only one increment (the last one) for each
Ωi needs to be stored.

3. If Ωi is a closed affine subspace, then the operator PΩi
is linear and it is not

required, in the kth cycle, to subtract the increment yk−1
i before projecting onto

Ωi. Thus, for affine subspaces, Dykstra’s procedure reduces to the alternating
projection method of von Neumann [46].

4. For k = 1, 2, . . . and i = 1, 2, . . . , p, it is clear from (3) that the following
relations hold

xk−1
p − xk

1 = yk−1
1 − yk

1 , (4)

xk
i−1 − xk

i = yk−1
i − yk

i , (5)

where x0
p = x0 and y0

i = 0, for all i = 1, 2, . . . , p.

For the sake of completeness we now present the key theorem associated with
Dykstra’s algorithm.
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Theorem 2.1 (Boyle and Dykstra, 1986 [7]) Let Ω1, . . . , Ωp be closed and con-
vex sets of IRn such that Ω = ∩p

i=1Ωi 6= ∅. For any i = 1, 2, . . . , p and any x0 ∈ IRn,
the sequence {xk

i } generated by (3) converges to x∗ = PΩ(x0) (i.e., ‖xk
i − x∗‖ → 0

as k → ∞).

We now discuss the delicate issue of stopping Dykstra’s algorithm within a certain
previously established tolerance that indicates the distance of the current iterate to
the unique solution.

2.2 Difficulties with some commonly used stopping criteria.

In some applications it is possible to obtain a somehow natural stopping rule, associ-
ated with the problem at hand. For example, when solving a linear system, Ax = b,
by alternating projection methods [10, 25], the residual vector (r(x) = b − Ax) is
usually available and yields some interesting and robust stopping rules. Another
example appears in image reconstruction for which a good and feasible image tells
the user that it is time to stop the process [13, 16]. Similar circumstances are present
in some other specific applications (e.g. saddle point problems [31], and molecular
biology [28, 29]).

However, in general, this is not the case, and we are left with the information
produced only by the internal computations, i.e., the sequence of iterates and per-
haps the sequence of increments, and some inner products. For this general case,
a popular stopping rule is to monitor the subsequence of projections onto one par-
ticular convex set, Ωi, and stop the process when the distance, in norm, of two
consecutive projections is less than or equal to a previously established tolerance
[26, 27, 32, 41].

Another commonly used criterion, that is claimed to improve the previous one
(e.g. [7, 22, 28, 45]) is to somehow compute an average of all the projections at
each cycle of projections, and then stop the process when the distance, in norm, of
two consecutive of those average projections is less than or equal to a previously
established tolerance.

Finally, we would like to mention that another criterion, that is also designed to
improve any of the two criteria above, is to check any of the previously described
rules during N consecutive cycles, where N is a fixed positive integer.

None of these stopping rules is a trustable choice. In [6], Birgin and Raydan pre-
sented the example below to establish that they can fail even for a two dimensional
problem. (see Figures 1 and 2).

Consider the closed and convex set Ω = Ω1∩Ω2, where Ω1 = {x ∈ IR2 | x1+x2 ≥
10} is a half space and Ω2 = {x ∈ IR2 | 3 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 4} is a box. This
closed and convex set in IR2 is shown in Figure 1.

Let x0 = (−49, 50)T and let us use Dykstra’s algorithm to find the closest point
to x0 in Ω. In Figure 2 we can see the first two cycles of this convergent process.
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(6, 4)T(3, 4)T

x1 + x2 ≥ 10

x1 ≥ 3 x1 ≤ 10

x2 ≤ 4

x2 ≥ 0

x1

x2

Figure 1: Feasible set Ω = Ω1 ∩ Ω2 in IR2.

Since y0
1 = y0

2 = 0 (null initial increments) then for the first cycle we project x0 onto
Ω1 to obtain p2 = x1

1 = (−44.5, 54.5)T and then we project p2 onto Ω2 to obtain
p3 = x1

2 = (3, 4)T . For the second cycle, the increments are not null (y1
1 = (4.5, 4.5)T

and y1
2 = (47.5,−50.5)T ), and we start from p3. First we project p4 = p3 − y1

1 onto
Ω1 to obtain p5 = x2

1. Then we project p6 = p5 − y1
2 onto Ω2 to obtain p3 again.

Hence x2
2 = x1

2. The increment associated with Ω2 is large enough to take the iterate
back to the quadrant where the projection onto the box is again p3. As discussed in
[6], this phenomenon will occur until cycle 32, i.e., p3 = x1

2 = x2
2 = . . . = x32

2 .
Moreover, by choosing x0 far enough, this misleading event can be repeated for

as many cycles as any previously established positive integer N . Eventually the size
of the increments will be reduced and convergence to x∗ will be observed.
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p1

p2

p3

p3

p4

p5

p6 (a) First cycle

(b) Second cycle

x1

x2

x1

x2

Figure 2: First two cycles of Dykstra’s algorithm to find the projection of x0 =
(−49, 50)T onto Ω = Ω1 ∩ Ω2.

2.3 Robust stopping criteria

After a close inspection of the proof of the Boyle and Dykstra’s theorem, Birgin
and Raydan [6] proposed some robust stopping criteria for Dykstra’s algorithm. For
that they first established the following result.

Theorem 2.2 Let x0 be any element of IRn. Consider the sequences {xk
i } and {yk

i }
generated by (3) and define ck as

ck =
k∑

m=1

p∑

i=1

‖ym−1
i − ym

i ‖2 + 2
k−1∑

m=1

p∑

i=1

〈ym
i , xm+1

i − xm
i 〉. (6)
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Then, in the kth cycle of Dykstra’s algorithm,

‖x0 − x∗‖2 ≥ ck. (7)

Moreover, at the limit when k goes to infinity, equality is attained in (7).

Based on the previous theorem, let us now write ck as follows:

ck = ck
L + ck

S,

where

ck
L =

k∑

m=1

cm
I , (8)

cm
I =

p∑

i=1

‖ym−1
i − ym

i ‖2 (9)

and

ck
S = 2

k−1∑

m=1

p∑

i=1

〈ym
i , xm+1

i − xm
i 〉.

Both ck
L and ck

S are monotonically nondecreasing by definition. Moreover in [6], the
following theorem is also established.

Theorem 2.3 Consider the sequences {xk
i } and {yk

i } generated by (3), and ck, ck
L

and ck
I as defined in (6), (8) and (9), respectively. For any k ∈ IN , if xk 6= x∗ then

ck+1
I > 0 and, hence, ck

L < ck+1
L and ck < ck+1.

The results established in Theorems 2.2 and 2.3 are combined in [6] to propose
robust stopping criteria. Notice that {ck

L} and {ck} are monotonically increasing
and convergent, and also that {ck

I} converges to zero. Therefore we can stop the
process when

ck
I =

p∑

i=1

‖yk−1
i − yk

i ‖
2 ≤ ε

or, similarly, when

ck − ck−1 = ck
I + 2

p∑

i=1

〈yk−1
i , xk

i − xk−1
i 〉 ≤ ε, (10)

where ε > 0 is a sufficiently small tolerance. As ck may grow fast, computing ck−ck−1

may give inaccurate results due to loss of accuracy in floating point representation
and, hence, cancellation. So, for the criterion in (10), it is recommendable to test
convergence with the second expression.

The computation of ck
I involves the squared-norm ‖yk−1

i −yk
i ‖

2, for i = 1, 2, . . . , p.
By (5), yk

i = yk−1
i +v, where v = xk

i −xk
i−1 is a temporary n-dimensional array needed
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in the computation of Dykstra’s algorithm. So, the computational cost involved in
the calculation of ck

I is just the cost of the extra inner product 〈v, v〉 at each iteration.
The computation of ck involves the calculation of ck

I plus an extra term. The
computational of this extra term is also small and involves an inner product and
the difference of two vectors per iteration. But, in contrast with the computation
of ck

I which does not require additional savings, the computation of the extra term
requires to save p extra n-dimensional arrays (the same amount of memory required
in Dykstra’s algorithm to save the increments). So, the computation of ck requires
some additional calculations and memory savings, and hence it is more expensive.
However, it also has the advantage of revealing the optimal distance: ‖x0 − x∗‖2,
that could be of interest in some applications.

We close this section with some comments concerning the behavior of the stop-
ping criteria when the problem is not feasible. In this case (Ω = ∅), there is no
solution and we know from Theorem 4.2 that the sequences {ck

L} and {ck} are
monotonically increasing. Moreover, under some mild assumptions on the sets Ωi,
the sequences {xk

i } converge for 1 ≤ i ≤ p, and there exists a real constant δ > 0
such that

∑p
i=1 ‖x

k
i−1 − xk

i ‖
2 ≥ δ for all k. A discussion on this topic is presented in

[2, Section 6], including a notion of distance between all the sets Ωi (see also [37]).
Now using (5), we obtain

p∑

i=1

‖xk
i−1 − xk

i ‖
2 =

p∑

i=1

‖yk−1
i − yk

i ‖
2 = ck

I .

Therefore, the sequence {ck
I} remains bounded away from zero, whereas {ck

L} and
{ck} tend to infinity. Consequently, none of the proposed stopping criteria will be
satisfied for any k, as expected.
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