
Universidad Central de Venezuela 
Facultad de Ciencias 

Escuela de Computación  
 

Lecturas en Ciencias de la Computación 
ISSN 1316-6239 

 
 

 

 

Residual iterative schemes for large-
scale linear systems 

 
William La Cruz y Marcos Raydan 

 
RT 2006-05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Centro de Cálculo Científico y Tecnológico de la UCV 

CCCT-UCV 

Caracas, Mayo, 2006. 

(Revisado Diciembre 2006) 



Residual iterative scheme for large-scale linear
systems

William La Cruz∗ Marcos Raydan†

December 14, 2006

Abstract

A new iterative scheme that use the residual vector as search direction is
proposed and analyzed for solving large-scale nonsymmetric linear systems. It
is closely related to Richardson’s method, although the stepsize and some other
new features are inspired by the success of recently proposed residual methods for
nonlinear systems. The convergence is analyzed for general matrices, and strong
convergence is established when the symmetric part of the coefficient matrix is
positive (negative) definite. A preliminary numerical experimentation is included
to show that the proposed scheme outperforms some recently proposed variations
on Richardson’s method, and also to show that it is competitive with well-known
and well-established Krylov subspace methods: GMRES and BiCGSTAB, with
and without preconditioning.

Keywords: Linear systems, Richardson’s method, Krylov subspace methods,
Barzilai-Borwein stpsize.

1 Introduction

We are interested in solving linear systems of equations

Ax = b, (1)

where A ∈ IRn×n is not symmetric, b ∈ IRn, and n is large.

∗Dpto. de Electrónica, Computación y Control, Escuela de Ingenieŕıa Eléctrica, Facultad de Inge-
nieŕıa, Universidad Central de Venezuela, Caracas 1051-DF, Venezuela. E-mail: lacruzw@ucv.ve. This
author was supported by CDCH project PI-08-14-5463-2004 and Fonacit UCV-PROJECT 97-003769.

†Dpto. de Computación, Facultad de Ciencias, Universidad Central de Venezuela, Apartado 47002,
Caracas 1041-A, Venezuela. E-mail: mraydan@kuaimare.ciens.ucv.ve. This author was supported by
Fonacit UCV-PROJECT 97-003769.

1



The well-known Richardson’s method (also known as Chebyshev method) and its
variations are characterized by using the residual vector, r(x) = b − Ax, as search
direction to solve (1) iteratively (see, e.g., [6, 10, 11, 22, 24]). In general, these vari-
ations of Richardson’s method are not competitive with Krylov subspace methods,
that offer nowadays the best potential for solving (1) when combined with suitable
preconditioning strategies. For a review on Richardson’s method and variations see
[7, 27, 28].

Nevertheless, from a different perspective, solving linear systems of equations can
be seen as a particular (although very special) case of solving nonlinear systems of equa-
tions. For nonlinear systems, some new iterative schemes have recently been presented
that use in a systematic way the residual vectors as search directions [17, 18]. These
ideas become effective, and competitive with Newton-Krylov ([2, 8, 9, 16]) schemes for
large-scale nonlinear systems, when the step lengths are chosen in a suitable way.

In this work we combine and adapt, for linear systems, the ideas introduced in
[17, 18] for the nonlinear case. To be precise, we present in Section 2 a scheme that
takes advantage of the method presented in [17] for choosing the direction, plus or
minus the residual, depending on the sign of a Rayleigh quotient closely related to the
step length. It also takes advantage of the new globalization strategy proposed and
analyzed in [18] that allows the norm of the residual to decrease non monotonically
and still guarantees convergence.

It is worth noticing that since our proposal uses plus or minus the residual as
search direction, then it can be viewed as a new variant of the well-known Richardson’s
method. However, there are significant new features. The most important is the use of
a new steplength based on the Barzilai-Borwein choice ([1, 12, 15, 20]) that has proved
to yield fast local convergence for the solution of nonlinear optimization problems ([3, 4,
5, 14, 21]). However, this special choice of step size cannot guarantee global convergence
by itself, as it usually happens with other variations (see, e.g., [6, 10, 11, 22, 24]). For
that, we combine its use with a tolerant globalization strategy, that represents the
second new feature. In section 3 we present a preliminary numerical experimentation
to compare the proposed scheme with some variations on Richardson’s method, and
also with well-known and well-established Krylov subspace methods: GMRES and
BiCGSTAB, with and without preconditioning

2 General algorithm and convergence

Let the functions g : IRn → IRn and f : IRn → IR be given as

g(x) = Ax− b, (2)

and
f(x) = ‖g(x)‖2, (3)

2



where ‖ · ‖ denotes, throughout this work, the Euclidian norm. We now present our
general algorithm that generates the iterates using plus or minus the residual vector
as search direction, and a spectral steplength closely related to the Barzilai-Borwein
choice of steplength [1], as follows

xk+1 = xk + sgn(βk)(1/βk−1)rk,

where βk = (rt
kArk)/(r

t
krk), and rk is the residual vector at xk. The use of the Barzilai-

Borwein steplength is inspired by the success obtained recently for solving nonlinear
systems of equations [17, 18]. To guarantee convergence, from any initial guess x0 and
any positive initial steplength 1/β0, a nonmonotone line search strategy needs to be
incorporated. This globalization strategy is inspired by the proposition presented in
[18], and requires some fixed parameters: {ηk}, γ, and σmin < σmax. Let us assume that
{ηk} is a given sequence such that ηk > 0 for all k ∈ IN (the set of natural numbers)
and ∞∑

k=0

ηk = η <∞. (4)

Let us also assume that γ ∈ (0, 1) and 0 < σmin < σmax < 1.

Algorithm 2.1. Residual Algorithm 1 (RA1)

Given: x0 ∈ IRn, α0 > 0, γ ∈ (0, 1), 0 < σmin < σmax < 1, {ηk}k∈IN such that (4)
holds. Set r0 = b− Ax0, and k = 0;

Step 1. If rk = 0, stop the process (successfully);

Step 2. Set βk = (rt
kArk)/(r

t
krk);

Step 3. If βk = 0, stop the process (unsuccessfully);

Step 4. (Backtracking process) Set λ← 1;

Step 5. If ‖rk − sgn(βk)(λ/αk)Ark‖2 ≤ ‖rk‖2 + ηk − γλ2‖rk‖2 go to Step 7;

Step 6. Choose σ ∈ [σmin, σmax], set λ← σλ, and go to Step 5;

Step 7. Set λk = λ, xk+1 = xk + sgn(βk)(λ/αk)rk, and rk+1 = rk − sgn(βk)(λ/αk)Ark;

Step 8. Set αk+1 = |βk|, k = k + 1 and go to Step 1.

Remark 2.1. The vector rk is built recursively in the algorithm, for the sake of efficiency,
but it is mathematically equivalent to rk = b− Axk for all k ∈ IN .

Remark 2.2. The spectral step length αk+1 = (rt
krk)/(r

t
kArk) for minimization was

introduced in the Barzilai-Borwein paper [1]. The properties of their method for convex
quadratic functions were established in [20], and further analyzed in [12]. For a review
containing the more recent advances on spectral choices of the steplength, see [15].

3



Remark 2.3. In practice, the parameters associated with the line search strategy are
chosen to reduce the number of backtrackings as much as possible while keeping the
convergence properties of the method. For example, the parameter γ > 0 is chosen
as a very small number (γ ≈ 1.D − 4), and ηk is chosen as a large number when
k = 0 and then it is reduced as slow as possible making sure that (4) holds (e.g.,

ηk = 104 (1− 10−6)
k
). Finally σmin < σmax are chosen as classical safeguard parameters

in the line search process (e.g., σmin = 0.1 and σmax = 0.5).

In order to present some convergence analysis for Algorithm 2.1, we first need some
technical results. For the sake on clarity we introduce the notation sgnk = sgn(βk) that
will be used throughout the rest of the paper.

Proposition 2.1. Let the sequences {xk}k∈IN , {rk}k∈IN , {βk}k∈IN and {λk}k∈IN be gen-
erated by Algorithm 2.1. Then, the following properties hold.

(a) For all k ∈ IN :
g(xk) = −rk, (5)

g(xk+1) = g(xk)− sgnk(λk/αk)Ag(xk). (6)

(b) The vector
dk = sgnk(1/αk)rk = −sgnk(1/αk)g(xk)

is a descent direction for the function f , for all k ∈ IN . Moreover,

f(xk + λdk) = ‖rk − sgnk(λ/αk)Ark‖2, for all k ∈ IN.

(c) The iterates xk+1 = xk + λkdk and λk satisfy the following conditions

f(xk+1) ≤ f(xk) + ηk − γλ2
k‖g(xk)‖2, (7)

for k ≥ 0.

Proof. (a). Since rk = b − Axk, for k ∈ IN , then by the definition of g, the equations
(5) and (6) holds.

Proof of (b). Since ∇f(x) = 2Atg(x), then

∇f(xk)
tdk = 2(g(xk)

tA)(−sgnk(1/αk)g(xk))

= −2(g(xk)
tAg(xk))sgnk(1/αk)

= −2(βk(g(xk)
tg(xk)))sgnk(1/αk)

= −2(|βk|/αk)‖g(xk)‖2 < 0, for k ∈ IN. (8)

Hence, dk is a descent direction for the function f for all k ∈ IN . Using now (a) and
the definition of g, f and dk, we obtain

f(xk + λdk) = ‖g(xk + λdk)‖2

= ‖A(xk + λdk)− b‖2

= ‖Axk + (λ/αk)sgnkArk − b‖2

= ‖g(rk) + (λ/αk)sgnkArk‖2

= ‖rk − (λ/αk)sgnkArk‖2.

4



Therefore, (b) holds.
Proof of (c). Using (a) and (b) it follows that

‖rk − (λ/αk)sgnkArk‖2 ≤ ‖rk‖2 + ηk − γλ2‖rk‖2

is equivalent to
f(xk + λdk) ≤ f(xk) + ηk − γλ2‖g(xk)‖2.

Consequently, the iterates xk+1 = xk + λkdk and λk satisfy (7), and (c) holds.

By Proposition 2.1 it is clear that Algorithm 2.1 can be viewed as an iterative
process for finding stationary points of f , that coincide with solutions of Ax = b. In
that sense, the convergence analysis for Algorithm 2.1 consists in proving that the
sequence of iterates {xk}k∈IN is such that limk→∞∇f(xk) = 0.

First we need to establish that Algorithm 2.1 is well defined.

Proposition 2.2. Algorithm 2.1 is well defined.

Proof. Since ηk > 0, then by the continuity of f(x), the condition

f(xk + λdk) ≤ f(xk) + ηk − γλ2‖g(xk)‖2,

is equivalent to

‖rk − (λ/αk)sgnkArk‖2 ≤ ‖rk‖2 + ηk − γλ2‖rk‖2,

that holds for λ > 0 sufficiently small.

Our next result guarantees that the whole sequence of iterates generated by Algo-
rithm 2.1 is contained in a subset of IRn.

Proposition 2.3. The sequence {xk}k∈IN generated by Algorithm 2.1 is contained in
the set

Φ0 = {x ∈ IRn : 0 ≤ f(x) ≤ f(x0) + η} . (9)

Proof. Clearly f(xk) ≥ 0 for k ∈ IN . Hence, it suffices to prove that f(xk) ≤ f(x0) + η
for k ∈ IN . For that we first prove by induction that

f(xk) ≤ f(x0) +
k−1∑
i=0

ηi. (10)

Equation (10) holds for k = 1. Indeed, since λ1 satisfies (7) then

f(x1) ≤ f(x0) + η0.

5



Let us suppose that (10) holds for k− 1 where k ≥ 2. We will show that (10) holds for
k. Using (7) and (10) we obtain

f(xk) ≤ f(xk−1) + ηk−1 ≤ f(x0) +
k−2∑
i=0

ηi + ηk−1 = f(x0) +
k−1∑
i=0

ηi,

which proves that (10) holds for k ≥ 2. Finally, using (4) and (10) it follows that, for
k ≥ 0:

f(xk+1) ≤ f(x0) +
k∑

i=0

ηi ≤ f(x0) + η,

and the result is established.

For our convergence results, we need the following proposition that is presented and
established in [13] as Lemma 3.3. We include it here for the sake of completeness.

Proposition 2.4. Let {ak}k∈IN and {bk}k∈IN be sequences of positive numbers satisfying

ak+1 ≤ (1 + bk)ak + bk and
∞∑

k=0

bk <∞.

Then, {ak}k∈IN converges.

Proposition 2.5. If Φ0 is bounded and {xk}k∈IN is generated by Algorithm 2.1, then

∞∑
k=0

‖xk+1 − xk‖2 <∞, (11)

and,
lim
k→∞

λk‖g(xk)‖ = 0. (12)

Proof. Using Proposition 2.3 and the fact that Φ0 is bounded, {‖g(xk)‖}k∈IN is also
bounded. Since ‖xk+1 − xk‖ = λk‖g(xk)‖, then using (7) we have that

‖xk+1 − xk‖2 = λ2
k‖g(xk)‖2 ≤

ηk

γ
+

1

γ
(f(xk)− f(xk+1)). (13)

Since ηk satisfies (4) and Φ0 is bounded, adding in both sides of (13) it follows that

∞∑
k=0

‖xk+1 − xk‖2 ≤
1

γ

∞∑
k=0

ηk +
1

γ

∞∑
k=0

(f(xk)− f(xk+1))

≤ η + f(x0)

γ
<∞,

which implies that
lim
k→∞
‖xk+1 − xk‖ = 0,

and so
lim
k→∞

λk‖g(xk)‖ = 0.

Hence, the proof is complete.

6



Proposition 2.6. If Φ0 is bounded and {xk}k∈IN is generated by Algorithm 2.1, then
the sequence {‖g(xk)‖}k∈IN converges.

Proof. Since f(xk) ≥ 0 and (1 + ηk) ≥ 1, for all k ∈ IN , then using (7) we have that

f(xk+1) ≤ f(xk) + ηk ≤ (1 + ηk)f(xk) + ηk.

Setting ak = f(xk) and bk = ηk, then it can also be written as

ak+1 ≤ (1 + bk)ak + bk,

and
∑∞

k=0 bk < η <∞. Therefore, by Proposition 2.4, the sequence {ak}k∈IN converges,
i.e., the sequence {f(xk)}k∈IN converges. Finally, since f(x) = ‖g(x)‖2 and ‖g(xk)‖ ≥
0, then the sequence {‖g(xk)‖}k∈IN converges.

We now present the main convergence result of this section. Theorem 2.1 shows
that either the process terminates at a solution or it produces a sequence {rk}k∈IN for
which limk→∞ rt

kArk = 0.

Theorem 2.1. If Φ0 is bounded, then Algorithm 2.1 terminates at a finite iteration i
where ri = 0, or it generates a sequence {rk}k∈IN such that

lim
k→∞

rt
kArk = 0.

Proof. Let us assume that Algorithm 2.1 does not terminate at a finite iteration. By
continuity, it suffices to show that all accumulation point x̄ of the sequence {xk}k∈IN

it satisfies that g(x̄)tAg(x̄) = 0. Be x̄ a accumulation point of {xk}k∈IN . Then, there
exists an infinite set of indices R ⊂ IN such that limk→∞,k∈R xk = x̄.

From Proposition 2.5 we have that

lim
k→∞

λk‖g(xk)‖ = 0

that holds if
lim
k→∞
‖g(xk)‖ = 0, (14)

or if
lim inf

k→∞
λk = 0. (15)

If (14) holds, the result follows immediately.
Let us assume that (15) holds. Then, there exists an infinite set of indices K =

{k1, k2, k3, . . .} ⊆ IN such that
lim
j→∞

λkj
= 0.

If R ∩K = ∅, then by the Proposition 2.5

lim
k→∞,k∈R

‖g(xk)‖ = 0.

7



Therefore, the thesis of the theorem is established.
Without loss of generality, we can assume that K ⊆ R. By the way λkj

is chosen
in Algorithm 2.1, there exists an index j̄ sufficiently large such that for all j ≥ j̄, there
exists ρkj

(0 < σmin ≤ ρkj
≤ σmax) for which λ = λkj

/ρkj
does not satisfy condition

(7), i.e.,

f

(
xkj

+
λkj

ρkj

dkj

)
> f(xkj

) + ηkj
− γ

λ2
kj

ρ2
kj

‖g(xkj
)‖2

≥ f(xkj
)− γ

λ2
kj

ρ2
kj

‖g(xkj
)‖2.

Hence,

f(xkj
+

λkj

ρkj
dkj

)− f(xkj
)

λkj
/ρkj

> −γ
λkj

ρkj

‖g(xkj
)‖2 ≥ −γ

λkj

σmin

‖g(xkj
)‖2.

By the Mean Value Theorem it follows that

∇f(xkj
+ tkj

dkj
)tdkj

> −γ
λkj

σmin

‖g(xkj
)‖2, for j ≥ j̄, (16)

where tkj
∈ [0, λkj

/ρkj
] tends to zero when j → ∞. By continuity and the definitions

of βk and dk, we obtain

lim
j→∞

dkj
= −sgn

(
g(x̄)tAg(x̄)

g(x̄)tg(x̄)

)
(1/ᾱ)g(x̄), (17)

where ᾱ = limk→∞,k∈K αk. We can assume that ᾱ > 0. If ᾱ = 0, then by the definition
of the αk, the thesis of the theorem is established. Setting d̄ = limj→∞ dkj

and noticing
that (xkj

+ tkj
dkj

)→ x̄ when j →∞, then taking limits in (16) we have that

∇f(x̄)td̄ ≥ 0. (18)

Since 2(Atg(x̄))td̄ = ∇f(x̄)td̄ < 0, then 2g(x̄)tAd̄ = 0. However from (17)

∇f(x̄)td̄ = −(2/ᾱ)g(x̄)tAg(x̄) = 0.

Therefore, g(x̄)tAg(x̄) = 0, with that which the thesis of the theorem is established.

Theorem 2.1 guarantees that Algorithm 2.1 converges to a solution of (1) whenever
the Rayleigh quotient of A,

c(x) =
xtAx

xtx
, x 6= 0, (19)

8



satisfies that |c(rk)| > 0, for k ≥ 1. If the matrix A is indefinite, then it could happen
that Algorithm 2.1 generates a sequence {rk}k∈IN that converges to the residual r̄ so
that r̄tAr̄ = 0 and r̄ 6= 0.

In our next result, we show the convergence of the algorithm when the symmetric
part of A, As = (At + A)/2, is positive definite, which appears in several different
applications. Of course, similar properties will hold when As is negative definite.

Theorem 2.2. If Φ0 is bounded and the matrix As is positive definite, then Algo-
rithm 2.1 terminates at a finite iteration i where ri = 0, or it generates a sequence
{rk}k∈IN such that

lim
k→∞

rk = 0.

Proof. Since As is positive definite, rt
kArk = rt

kASrk > 0, rk 6= 0, for all k ∈ IN . Then,
by the Theorem 2.1 the Algorithm 2.1 terminates at a finite iteration i where ri = 0,
or it generates a sequence {rk}k∈IN such that limk→∞ rk = 0.

To be precise, the next proposition shows that if As is positive definite, then in
Algorithm 2.1 it holds that βk > 0 and dk = (1/αk)rk, for all k ∈ IN .

Proposition 2.7. Let the matrix As be positive definite, and let αmin and αmax be the
smallest and the largest eigenvalues of As, respectively. Then the sequences {βk}k∈IN

and {dk}k∈IN , generated by Algorithm 2.1 satisfy that dk = (1/αk)rk, for k ∈ IN .

Proof. It is well-known that the Rayleigh quotient of A satisfies, for any x 6= 0,

0 < αmin ≤ c(x) ≤ αmax. (20)

By the definition of βk we have that

βk = c(rk) ≥ αmin > 0, for k ≥ 0.

Moreover, since βk > 0 for k ≥ 0, then

dk = sgn(βk)(1/αk)rk = (1/αk)rk, for k ≥ 0.

Proposition 2.7 guarantees that the choice dk = (1/αk)rk is a descent direction,
when As is positive definite. This yields a simplified version of the algorithm for
solving linear systems when the matrix has positive (or negative) definite symmetric
part.

Algorithm 2.2. Residual Algorithm 2 (RA2)

Given: x0 ∈ IRn, α0 > 0, γ ∈ (0, 1), 0 < σmin < σmax < 1, {ηk}k∈IN such that (4)
holds. Set r0 = b− Ax0, and k = 0.

9



Step 1. If rk = 0, stop the process;

Step 2. Set λ← 1;

Step 3. If ‖rk − (λ/αk)Ark‖2 ≤ ‖rk‖2 + ηk − γλ2‖rk‖2 go to Step 5;

Step 4. Choose σ ∈ [σmin, σmax], set λ← σλ, and go to Step 3;

Step 5. Set λk = λ, xk+1 = xk + (λk/αk)rk, y rk+1 = rk − (λk/αk)kArk;

Step 6. Set αk+1 = (rt
kArk)/(r

t
krk), k = k + 1 and go to Step 1.

Remark 2.4. (i) Algorithm 2.2 is well defined.

(ii) The sequence {xk}k∈IN generated by Algorithm 2.2 is contained in Φ0.

(iii) Since αk+1 = c(rk) and c(x) satisfies (20), then

0 < αmin ≤ αk ≤ αmax, (21)

for k ≥ 1. Moreover, 0 < (λk/αk) ≤ σmaxα
−1
min, for k ≥ 1.

(iv) Since Algorithm 2.2 is a simplified version of the Algorithm 2.1 when As is positive
definite, then its convergence is established by Theorem 2.2.

Proposition 2.8. Let g and f be given by (2) and (3), respectively. Let us assume that
{xk}k∈IN , {rk}k∈IN and {λk}k∈IN , are generated by Algorithm 2.2. Then the following
properties hold

(a) For each k ∈ IN :

g(xk) = −rk,

g(xk+1) = g(xk)− (λk/αk)Ag(xk).

(b) The vector
dk = (1/αk)rk = −(1/αk)g(xk)

is a descent direction for f . Moreover,

f(xk + λdk) = ‖rk − (λ/αk)Ark‖2.

(c) The iterates xk+1 = xk + λkdk and λk satisfy conditions (7), for k ≥ 0.

Proof. Setting sgn(βk) = 1 in the proof of Proposition 2.1 all the claims in (a), (b) and
(c) hold.

10



Proposition 2.9. If {xk}k∈IN is generated by Algorithm 2.2, then

∇f(xk)
tdk ≤ (−2αmin/αmax)‖g(xk)‖2, (22)

for k ≥ 1.

Proof. From Algorithm 2.2 we have that

∇f(xk)
tdk = (−2/αk)g(xk)

tAg(xk)

≤ (−2/αmax)g(xk)
tAg(xk)

≤ (−2αmin/αmax)g(xk)
tg(xk)

= (−2αmin/αmax)‖g(xk)‖2,

for k ≥ 1.

3 Numerical experiments

We report on some numerical experiments that illustrate the performance of algorithm
RA2, presented and analyzed previously, for solving non symmetric and positive (or
negative) definite linear systems. In all experiments, computing was done on a Pentium
IV at 3.0 GHz with MATLAB 6.0, and we stop the iterations when

‖rk‖
‖b‖

≤ ε, (23)

where 0 < ε� 1.
As we mentioned in the introduction, our proposal can be viewed as a new variant of

the well-known Richardson’s method, with some new features. First, we will compare
the behavior of algorithm RA2 with two different variations of Richardson’s method,
whose general iterative step from a given x0 is given by

xk+1 = xk + λkrk,

where the residual vectors can be obtained recursively as

rk+1 = rk − λArk.

It is well-known that if we choose the steplengths as the inverse of the eigenvalues of
A (i.e., λk = λi(A) for 1 ≤ i ≤ n), then in exact arithmetic the process terminates at
the solution in at most n iterations. Due to roundoff errors, in practice, this process
is repeated cyclically (i.e., λk = λi mod n(A) for all k ≥ n). In our results, this cyclic
scheme will be reported as the ideal Richardson’s method.

11



0 100 200 300 400 500 600 700 800
10

−20

10
−10

10
0

10
10

10
20

10
30

10
40

Iterations

‖rk‖

Ideal Richardson’s method
Optimal Richardson’s method
RA2

Figure 1: Behavior of the ideal and the optimal Richadson’s method when compared
with the RA2 algorithm for A = −Gallery(′lesp′, 100).

A recent variation on Richardson’s method that has optimal properties concerning
the norm of the residual, is discussed by Brezinski [6] and chooses the steplength as
follows:

λk =
rT
k wk

wT
k wk

,

where wk = Ark. This option will be referred in our results as the optimal Richardson’s
method.

For our first experiment, we set n = 100, b = rand(n, 1), ε = 1.0D − 16, and the
matrix

A = −Gallery(′lesp′, n).

The results for this experiment are shown in Figure 1. We observe that the ideal
Richardson’s method is numerically unstable and requires several cycles to terminate
the process. The optimal Richardson’s method has a monotone behavior and it is
numerically stable, but requires significantly more iterations than the RA2 algorithm
to reach the same accuracy. It is also worth noticing the nonmonotone behavior of the
RA2 algorithm that accounts for the fast convergence. Similar behavior was observed
for the three methods on several positive definite test matrices.

We now present a comparison on several problems with well-known Krylov subspace
methods. GMRES [23] and BiCGSTAB [26] are among the best-known Krylov itera-

12



tive methods for solving large-scale non symmetric linear systems (see, e.g., [25, 27]).
Therefore, we compare the performance of algorithm RA2 with these two methods,
without preconditioning and also taking advantage of two classical preconditioning
strategies of general use: Incomplete LU (ILU) and SSOR.

In all the experiments described here we implemented GMRES with the restart
parameters m = 20 (GMRES(20)) and m = 40 (GMRES(40)), and for all considered
methods we use the vector x0 = 0 as the initial guess. For algorithm RA2 we use
the following parameters: α0 = ‖b‖, γ = 10−4, σmin = 0.1, σmax = 0.5, and ηk =

104 (1− 10−6)
k
. For choosing a new λ at Step 4, we use the following procedure,

described in [18]: given the current λc > 0, we set the new λ > 0 as

λ =


σminλc if λt < σminλc,
σmaxλc if λt > σmaxλc,
λt otherwise,

where

λt =
λ2

cf(xk)

f(xk + λcd) + (2λc − 1)f(xk)
.

In the following tables, the process is stopped when (23) is attained, but it can also
be stopped prematurely for different reasons. We report the different possible failures
observed with different symbols as follows:

* : The method reaches the maximum (20000) number of iterations.

** : The method stagnates (three consecutive iterates are exactly the same).

*** : Overflow is observed while computing one of the internal scalars.

For our second experiment we consider a set of 10 test matrices, described in Table 1,
and we set the right hand side vector b = (1, 1, . . . , 1)t ∈ IRn. In Table 1 we report the
problem number (M), a brief description of the matrix, and the MATLAB commands
to generate it.

We summarize on Table 2 the behavior of GMRES(20), GMRES(40), BICGSTAB
and RA2 without preconditioning. We have chosen ε = 10−10 in (23) for stopping
the iterations. We report the matrix number (M) from Table 1, the dimension of the
problem (n); the number of computed residuals (CR), and the CPU time in seconds
until convergence (T).

In Tables 3 and 4 we report the results for the matrices 4, 5 ,6, 7 ,8 and 9, when
we use the following two preconditioning strategies.

(A) Incomplete LU factorization with drop tolerance
The preconditioning matrix is obtained, in MATLAB, with the command [L, U ]
= luinc(A,0.5).

13



Table 1: First set of test matrices

M Description MATLAB Commands

1 Sparse adjacency matrix
from NASA airfoil.

MATLAB demo: airfoil

2 Singular Toeplitz lower Hes-
senberg matrix

A=gallery(’chow’,n,1,1)

3 Circulant matrix A=gallery(’circul’,v), where
v ∈ IRn is such that

vi =


10−6, i = 1,
1, i = n/2,
−1, i = n,
0, otherwise.

4 Diagonally dominant, ill-
conditioned, tridiagonal
matrix

A=gallery(’dorr’,n,1)

5 Perturbed Jordan block A=gallery(’forsythe’,n,-1,2)
6 Matrix whose eigenvalues

lie on a vertical line in the
complex plane

A=gallery(’hanowa’,n,n)

7 Jordan block A=gallery(’jordbloc’,n,2)
8 Tridiagonal matrix with

real sensitive eigenvalues
A = -gallery(’lesp’,n)

9 Pentadiagonal Toeplitz ma-
trix

A=gallery(’toeppen’,n,1,10,n,-
10,-1)

10 Upper triangular matrix
discussed by Wilkinson and
others

A=gallery(’triw’,n,-0.5,2)

14



(B) The SSOR preconditioning strategy
The preconditioning matrix is given by

(D − ωE)D−1(D − ωF ),

where−E is the strict lower triangular part of A, −F is the strict upper triangular
part of A, and D is the diagonal part of A. We take ω = 1.

In this case, we set ε = 5×10−15 in (23) for stopping the iterations. In Figures 2 and 3
we show the behavior of all considered methods when using preconditioning strategies
(A) and (B), respectively, for problems 4-9.

Table 2: GMRES(20), GMRES(40), BICGSTAB and RA2 without preconditioning

GMRES(20) GMRES(40) BICGSTAB RA2
M n CR T CR T CR T CR T
1 4253 60 0.406 60 0.375 ** ** 64 0.047
2 1000 229 3.047 229 3.000 423 9.266 538 5.594
3 5000 * * * * 1 0.016 2 0.000
4 500 20674 32.375 20674 32.594 549 0.188 19449 4.969
5 5000 28 0.313 28 0.234 77 0.141 29 0.016
6 5000 17 0.188 17 0.109 21 0.047 31 0.000
7 5000 27 0.297 27 0.188 62 0.125 28 0.000
8 5000 2562 22.203 2562 21.266 4740 13.688 10943 10.297
9 5000 4 0.094 4 0.031 4 0.031 4 0.000

10 5000 3067 26.172 3067 24.313 *** *** 3408 3.203

Table 3: GMRES(20), GMRES(40), BICGSTAB and RA2 with preconditioning (A)

GMRES(20) GMRES(40) BICGSTAB RA2
M n CR T CR T CR T CR T
4 50000 * * * * * * 3 0.078
5 500000 38 61.438 48 100.906 81 38.484 20 4.875
6 500000 1 2.125 1 2.641 1 0.844 2 0.703
7 500000 37 59.391 38 87.656 72 34.031 19 4.656
8 500000 21 35.688 21 36.813 46 23.234 11 2.938
9 500000 2 3.266 2 3.813 3 2.250 2 0.875

For our third test problem, we consider the second order centered-differences dis-
cretization of

−∇2u + γ(xux + yuy) + βu = f, (24)

on the unit square, with homogeneous Dirichlet boundary conditions, u = 0, on the
border of the region. We set the parameters γ = 7100 and β = 100 to guarantee that

15



Table 4: GMRES(20), GMRES(40), BICGSTAB and RA2 with preconditioning (B)

GMRES(20) GMRES(40) BICGSTAB RA2
M n CR T CR T CR T CR T
4 50000 * * * * * * 3 0.109
5 500000 25 185.953 25 186.609 46 263.625 10 60.703
6 500000 1 1.688 1 2.188 1 0.641 2 0.469
7 500000 21 37.156 21 38.203 26 16.922 10 4.828
8 500000 11 15.203 11 15.344 23 12.313 7 2.297
9 500000 2 5.516 2 6.594 3 4.203 2 2.734

0 10 20 30 40 50 60 70 80
10

−15

10
−10

10
−5

10
0

10
5

Iterations

||r
k||

Problem 5

0 10 20 30 40 50 60 70
10

−15

10
−10

10
−5

10
0

10
5

Iterations

||r
k||

Problem 7

0 5 10 15 20 25 30 35 40 45
10

−15

10
−10

10
−5

10
0

10
5

Iterations

||r
k||

Problem 8

GMRES(20) GMRES(40) BICGSTAB RA2

Figure 2: Behavior of all methods when using preconditioning techniques (A)

16



0 1 2 3 4 5 6 7 8
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Iterations

||r
k||

Problem 4

0 5 10 15 20 25 30 35 40 45
10

−15

10
−10

10
−5

10
0

10
5

Iterations

||r
k||

Problem 5

0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

10
5

Iterations

||r
k||

Problem 7

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

10
5

Iterations

||r
k||

Problem 8

GMRES(20) GMRES(40) BICGSTAB RA2

Figure 3: Behavior of all methods when using preconditioning techniques (B)

the symmetric part of the matrix is positive definite. The discretization grid has 71
internal nodes per axis producing an n×n matrix where n = 5041. The right hand side
vector is chosen such that the solution vector is x = (1, 1 . . . , 1)t. In all the experiments
we choose the initial guess as x0 = (0, 0, . . . , 0)t. Once again we compare GMRES(20),
GMRES(40), BICGSTAB and RA2 with the preconditioning strategies (A) and (B).

In Table 5 we report the results obtained with GMRES, BICGSTAB and RA2 for
solving problem (24), when using the preconditioning strategies described in (A) and
(B). We set ε = 10−13 in (23) for stopping the iterations. In Figure 4 we show the
behavior of all methods when using preconditioning techniques (A) and (B) for solving
(24).

Table 5: GMRES(20), GMRES(40), BICGSTAB and RA2 for solving (24)

GMRES(20) GMRES(40) BICGSTAB RA2
Preconditioning strategy CR T CR T CR T CR T

(A) * * 730 12.984 * * 123 1.094
(B) * * 195 25.016 * * 19 2.266

We observe that, in general, RA2 is a robust method for solving non symmetric
linear systems whose symmetric part is positive (negative) definite. It is competitive
with the well-known GMRES and BICGSTAB in number of computed residuals and
CPU time, without preconditioning. We also observe that RA2 outperforms GMRES
and BICGSTAB when preconditioning strategies that reduce the number of cluster of
eigenvalues are incorporated.

17



0 100 200 300 400 500 600 700 800
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iterations

||r
k||

(A)

0 50 100 150 200 250 300 350 400
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iterations

||r
k||

(B)

GMRES(20) GMRES(40) BICGSTAB RA2

Figure 4: Behavior of all methods when using preconditioning techniques (A) and (B)
for solving (24)

4 Conclusions

We present a residual algorithm (RA2) for solving large-scale nonsymmetric linear sys-
tems when the symmetric part of the coefficient matrix is positive (or negative) definite.
Due to its simplicity, the method is very easy to implement, memory requirements are
minimal and, so, its use for solving large-scale problems is attractive (MATLAB codes
written by the authors are available by request).

We have compared the performance of the new residual method with GMRES
and BICGSTAB, on some test problems, without preconditioning and also using two
classical preconditioning strategies (ILU and SSOR). Our preliminary numerical results
indicate that using the residual direction with a suitable step length can be competitive
for solving large-scale problems, and preferable when the eigenvalues are clustered by
a preconditioning strategy. Many new preconditioning techniques have been recently
developed (see e. g., [25, 27] and references therein) that possess the clustering property
when dealing with nonsymmetric matrices. In general, any preconditioning strategy
that reduces the number of cluster of eigenvalues of the coefficient matrix (suitable for
Krylov-subspace methods) should accelerate the convergence of the residual scheme
introduced in this work. In that sense, the new residual method can be viewed as an
extension of the preconditioned residual method, based on the Barzilai-Borwein choice
of step length, introduced in [19].

18



For nonsymmetric systems with an indefinite symmetric part, the proposed general
scheme RA1 can not guarantee convergence to solutions of the linear system, and
usually convergence to points that satisfy limk→∞ rt

kArk = 0, as predicted by Theorem
2.1, but such that rk 6= 0, is observed in practice.

References

[1] J. Barzilai and J. M. Borwein (1988). Two-point step size gradient methods,
IMA Journal of Numerical Analysis 8, 141–148.

[2] S. Bellavia, and B. Morini (2001). A globally convergent newton-gmres subspace
method for systems of nonlinear equations. SIAM J. Sci. Comput. 23, 940–960.

[3] E. G. Birgin, and J. M. Mart́ınez (2001). A spectral conjugate gradient method
for unconstrained optimization. Applied Mathematics and Optimization 43, pp.
117–128.

[4] E. G. Birgin, and Y.G. Evtushenko (1998). Automatic differentiation and spec-
tral projected gradient methods for optimal control problems. Optimization
Methods and Software 10, pp. 125–146.

[5] E. G. Birgin, J. M. Mart́ınez and M. Raydan (2000). Nonmonotone spectral pro-
jected gradient methods on convex sets. SIAM Journal on Optimization 10, pp.
1196–1211.

[6] C. Brezinski (1996). Variations on Richardson’s method and acceleration. Bull.
Soc. Math. Belg., 33–44.

[7] C. Brezinski (1997). Projection Methods for Systems of Equations. North Hol-
land, Amstrerdam.

[8] P. Brown, and Y. Saad (1990). Hybrid Krylov methods for nonlinear systems
of equations. SIAM J. Sci. Comp. 11, 450–481.

[9] P. Brown, and Y. Saad (1994) Convergence theory of nonlinear Newton-Krylov
algorithms. SIAM Journal on Optimization 4, 297–330.

[10] D. Calvetti and L. Reichel (1996). Adaptive Richardson iteration based on Leja
points. J. Comp. Appl. Math., 71, 267–286.

[11] D. Calvetti and L. Reichel (1996). An adaptive Richardson iteration method for
indefinite linear systems. Numer. Algorithms, 12, 125–149.

[12] Y. H. Dai and L. Z. Liao (2002). R-linear convergence of the Barzilai and Bor-
wein gradient method. IMA Journal on Numerical Analysis 22, pp. 1–10.

19



[13] J. E. Jr. Dennis, and J. J. Moré (1974). A characterization of superlinear con-
vergence and its applications to quasi-Newton methods. Math. of Comp., 28,
549–560.

[14] M. A. Diniz-Ehrhardt, M. A. Gomes-Ruggiero, J. M. Mart́ınez and S. A. Santos
(2004). Augmented Lagrangian algorithms based on the spectral gradient for
solving nonlinear programming problems. Journal of Optimization Theory and
Applications 123, pp. 497–517.

[15] R. Fletcher (2005). On the Barzilai-Borwein method. In: Optimization and Con-
trol with Applications (L.Qi, K. L. Teo, X. Q. Yang, eds.) Springer, 235–256.

[16] C. T. Kelley (1995). Iterative Methods for Linear and Nonlinear Equations.
SIAM, Philadelphia.

[17] W. La Cruz and M. Raydan (2003). Nonmonotone spectral methods for large-
scale nonlinear systems. Optimization Methods and Software, 18, 583–599.

[18] W. La Cruz, J. M. Mart́ınez and M. Raydan (2006). Spectral residual method
without gradient information for solving large-scale nonlinear systems. Math. of
Comp., 75, 1449–1466.

[19] B. Molina and M. Raydan (1996). Preconditioned Barzilai-Borwein method for
the numerical solution of partial differential equations. Numerical Algorithms,
13, pp. 45–60.

[20] M. Raydan (1993). On the Barzilai and Borwein choice of the steplength for the
gradient method. IMA Journal on Numerical Analysis 13, 321–326.

[21] M. Raydan (1997). The Barzilai and Borwein gradient method for the large
scale unconstrained minimization problem. SIAM Journal on Optimization 7,
pp. 26–33.

[22] L. Reichel (1991). The application of Leja points to Richardson iteration and
polynomial preconditioning. Linear Algebra Appl., 154-156, 389–414.

[23] Y. Saad and M. H. Shultz (1986). GMRES: generalized minimal residual algo-
rithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7,
856–869.

[24] D. C. Smolarski and P. E. Saylor (1988). An optimum semi-iterative method
for solving any linear system with a square matrix. BIT, 28, 163–178.

[25] Y. Saad (2003). Iterative Methods for Sparse Linear Systems. SIAM, Philadel-
phia.

20



[26] H. A. van der Vorst (1992). Bi-CGSTAB: a fast and smoothly convergent variant
Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat.
Comput., 13, 631–644.

[27] H. A. van der Vorst (2003). Iterative Krylov Methods for Large Linear Systems.
Cambridge University Press.

[28] D. M. Young (1990). A historical review of iterative methods. In: A History of
Scientific Computing (S. G. Nash, Eds.) Addison-Wesley Reading, MA, 180–194.

21


	portadaRT2006-05.pdf
	Residual iterative schemes for large-scale linear systems

	wr3rev.pdf

