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Abstract

Dykstra’s algorithm is a cyclic scheme for finding the projection of
a given point onto the intersection of a finite number of closed convex
sets. It has recently been generalized to allow a random ordering
of the projections over the convex sets, rather than cyclic, and to
allow the projection onto separating half spaces without sacrificing the
convergence properties of the algorithm. Using a duality approach, we
extend further the algorithm to skip, in a systematic way, some of the
involved separating half spaces at each cycle. This generalized version
is applied to a constrained least-squares matrix problem obtaining
a significant reduction in computational cost when compared to the
classical Dykstra’s algorithm. The main advantage of the new version
is that it avoids the calculation of several eigenvalues and eigenvectors
of a square symmetric matrix at every cycle.
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1 Introduction

Dykstra’s alternating projection algorithm [7] is a well-known cyclic scheme

for finding the projection of a given point onto the intersection of a finite num-

ber of closed convex sets. It has been generalized by Hundal and Deutsch

[11] to allow a random ordering, instead of cyclic, of the projections onto the

closed convex sets. More recently, it has also been generalized by Bregman

et al. [4] to avoid the projection onto each one of the convex sets in every

cycle. Instead, projections onto separating half spaces are used. In this work,

using a duality approach, we extend further the algorithm to skip, in a sys-

tematic way, some of the involved separating half spaces at each cycle. In

particular we illustrate the generalized version solving the constrained least-

squares matrix problem considered by Escalante and Raydan ([8] and [9]).

In that case, it is required to project at every cycle onto the ε-positive defi-

nite cone of matrices, and that implies the calculation of several eigenvalues

and eigenvectors of the projected matrix. These calculations are in general

very expensive. By using the generalized version, we obtain a version of the

algorithm that only requires the computation of several eigenvalues and cor-

responding eigenvectors of a matrix at a prescribed subsequence of cycles,

and still guarantees convergence.

Dykstra’s algorithm belongs to the general family of alternating projec-

tion methods. The original alternating projection method dates back to von

Neumann [12] who treated the problem of finding the projection of a given

point in a Hilbert space onto the intersection of two closed subspaces. Later,

Cheney and Goldstein [5] extended the analysis of von Neumann’s alternating

projection scheme to the case of two closed and convex sets. In particular,

they established convergence under mild assumptions. However, the limit

point need not be the closest in the intersection. Therefore, the alternating

projection method, proposed by von Neumann, is not useful for finding the

projection onto convex sets. Fortunately, Dykstra [7] found a clever modi-

fication of von Neumann’s scheme. It guarantees convergence to the closest

point in the intersection of closed and convex sets that are not necessarily
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closed subspaces. Dykstra’s algorithm can be obtained via duality, and more

powerful versions can be developed.

This paper is organized as follows. In Section 2 we develop a general-

ized Dykstra’s algorithm via duality, and discuss its theoretical properties.

In Section 3, we present the generalized alternating projection algorithm

when applied to a constrained least-squares matrix problem. In Section 4

we present preliminary numerical results to illustrate the properties of the

proposed algorithm.

2 General framework

Let us consider the following optimization problem

(P1)

⎧⎨
⎩

min f(x)

s.t. x ∈ ∩m
i=1Ci,

where f : V → IR, V is a vector space, and Ci ⊆ V is a closed and convex set

for every i. Associated to problem (P1) we introduce some required notation.

Let C = ∩m
i=1Ci, and let V # be the set of affine continuous functionals

γ : V −→ IR. We define the set V #(C) by

V #(C) ≡ {γ ∈ V # : γ(x) � 0, ∀x ∈ C}.

Let us now consider an algorithm that produces a sequence {xk}, whose

k-th iterate is given by

xk = argmin f(x) +

m∑
i=1

γk
i (x),

where

γk
i ∈ V #(Ci), i = 1, . . . , m.
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Let F : V # −→ IR be defined as F(γ) = infx∈V f(x)+γ(x), and consider

the following iterative algorithm.

Generalized Dykstra’s algorithm

Step 1. Choose i(k) ∈ {1, . . . , m} (for example, i(k) = (k mod m) + 1).

Step 2. Choose Γk ⊆ V #(Ci(k)) such that γk
i(k) ∈ Γk and Γk is a closed convex

cone in V #.

Step 3. Solve the optimization problem (Dk) to obtain gk+1

(Dk)

⎧⎨
⎩

maxF(
∑

i�=i(k) γk
i + g)

s.t. g ∈ Γk

Step 4. Set ⎧⎨
⎩

γk+1
i(k) = gk+1

γk+1
i = γk

i , i 	= i(k).

Step 5. Finally, set

xk+1 = argmin f(x) +

m∑
i=1

γk+1
i .

Now, if we define

γk =

m∑
i=1

γk
i ,

where γk
i ∈ V #(Ci), then γk ∈ V #(C). Notice that the sequence {γk} satisfy

the following ascent properties⎧⎨
⎩
F(γk) � f(x), ∀ x ∈ C

F(γ1) � F(γ2) � . . .
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We now establish a lemma associated with the sequence {γk}.
Lemma 2.1 If C 	= ∅, then the gradient of γk, ∇γk, is bounded for all k.

Proof: Let x̂ ∈ C. Since γk is affine,

γk(x) = ∇γk(x− x̂) + γ(x̂) � ∇γk(x− x̂).

Thus,

F(γ1) � F(γk) = inf
x

f(x) + γk(x) � inf
x

f(x) +∇γk(x− x̂)

�

We can illustrate the importance of the dual ascent variables with constrained

least-squares minimization problems. Consider the following optimization

problem

(P2)

⎧⎨
⎩

min 1
2
‖x− x‖2

s.t. x ∈ ∩m
i=1Ci,

where ‖z‖2 = 〈z, z〉.
Associated with problem (P2) consider Dykstra’s Algorithm [3, 7]:

I0
i = 0, i = 1, . . . , m, y0 = x. For k = 0, 1, . . .

ak+1 = yk − Ik
i(k)

yk+1 = PCi(k)
(ak+1)

Ik+1
i(k) = yk+1 − ak+1

Ik+1
i = Ik

i , i 	= i(k),

where PCi
represents the projection onto Ci. This process can be written as:

(Dykstra)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I0
i = 0, i = 1, . . . , m, x0 = x

ak+1 = yk − Ik
i(k)

yk+1 = PCi(k)
(ak+1)

Ik+1
i =

{
Ik
i , i 	= i(k)

yk+1 − ak+1, i = i(k)
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Lemma 2.2 yk = x +
∑m

i=1 Ik
i .

Proof. It follows directly from the properties of Dykstra’s algorithm. �

Let γ0
i ≡ 0, for i = 1, . . . , m, and x0 = x. According to the Generalized

Dykstra’s Algorithm, if gk+1 is the solution of the problem⎧⎨
⎩

maxF(
∑

i�=i(k) γk
i + g)

s.t. g ∈ V #(Ci(k))

γk+1
i =

⎧⎨
⎩

γk
i , i 	= i(k)

gk+1, i = i(k)

then

xk+1 = argminf(x) +
m∑

i=1

γk+1
i .

Lemma 2.3 Ik
i = −∇γk

i , i = 1, . . . , m, k = 0, 1, . . ..

Proof. It follows by induction. It is clear that the thesis is true when k = 0.

Suppose it is valid for k. Then, since

fk(x) = f(x) +
∑

i�=i(k)

γk
i (x), where f(x) =

1

2
‖x− x‖2

∇fk(x) = x− x +
∑

i�=i(k)∇γk
i

(by inductive hypothesis)

= x− x−∑
i�=i(k) Ik

i

= x− x−∑m
i=1 Ik

i + Ik
i(k)

(by Lemma 2.2)

= x− yk + Ik
i(k)

= x− ak+1,
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and therefore,

fk(x) =
1

2
‖x− ak+1‖2 + ck,

So, if

Ff(
∑

i�=i(k)

γk
i + γ) = Ffk

(γ),

(Dk)

⎧⎨
⎩

maxFfk
(γ)

s.t. γ ∈ V #(Ci(k))

is equivalent to ⎧⎨
⎩

min fk(x) = 1
2
‖z − ak+1‖2 + ck

s.t. x ∈ Ci(k),

whose solution is given by PCi(k)
(ak+1).

(We could define

yk+1(x) = 〈x− PCi(k)
(ak+1), ak+1 − PCi(k)

(ak+1)〉
= 〈x− yk+1, ak+1 − yk+1〉).

Finally,

∇γk+1
i(k) = ak+1 − yk+1 = −Ik+1

i(k) , i = i(k).

If i 	= i(k) the result follows by the inductive hypothesis. �

We are now ready to establish a global convergence result for the Gener-

alized Dykstra’s algorithm when solving (P2).

Theorem 2.1 If the interior of C is not empty, and there exists a positive

integer p ≥ m such that for any i ∈ {1, . . .m} there exists at least one

k ∈ {1, . . . p} such that i = i(k), and Γk = V #(Ci(k)), then the sequence {xk}
generated by the Generalized Dykstra’s Algorithm for solving (P2) satisfy

lim
k→∞
‖xk − PC(x)‖ = 0.
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Proof. From Lemma 2.1 and Lemma 2.3 we obtain Theorem 13 in [4], which

yields our convergence result as a particular case of the convergence Theorem

3.1 in [11]. �

Roughly speaking, Theorem 2.1 claims that if all the convex sets are

chosen often enough, and we project onto the associated separating affine

sets, then the sequence generated by the Generalized Dykstra’s Algorithm

converges to the closest point in the intersection.

3 Solving least-squares matrix problems

In this section we illustrate the use of the theory described in the previ-

ous section to a constrained least squares matrix problem. In particular we

apply the generalized Dykstra’s algorithm developed in Section 2 to the least-

squares matrix problem considered by Escalante and Raydan ([8] and [9]).

For that consider V = IRn×n the subspace of real square matrices, and the

following optimization problem

min ‖X −A‖2F , (1)

subject to

XT = X ,

L � X � U ,

λmin(X) � ε > 0 ,

X ∈ P ,

where A, L and U are given n × n real matrices, and X is the symmetric

n×n matrix that we wish to find. Likewise, λmin(X) represents the smallest

eigenvalue of X, ε is a given positive constant, and P is the set of n × n

matrices having a particular linear pattern. Throughout this paper, the

notation A � B, for any two real n × n matrices, means that Aij � Bij for
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all 1 � i, j � n. Also, ‖A‖F denotes the Frobenius norm of a real matrix A,

defined as

‖A‖2F = 〈A, A〉 =

n∑
i,j=1

(Aij)
2 ,

where the inner product is given by 〈A, B〉 = trace(AT B).

Problem (1) arises in statistics and mathematical economics. A classical

example in statistics is the problem of finding the nearest symmetric pos-

itive definite patterned matrix to a sample covariance matrix. Patterned

covariance matrices arise frequently from the models in physical and social

sciences, see Hu and Olkin [10]. Another example, discussed by Dantzig [6],

is the problem of deriving utility functions for the economy. In this case, the

fitting matrix X has to be a symmetric and bounded matrix, whose smallest

eigenvalue must be greater than a specified positive parameter ε.

We now define a collection of sets in IRn×n whose intersection is the

feasible region of problem (1). These sets are denoted by Box (B), ε-positive

definite (εpd), and Pattern (P); and are given by

B = {X ∈ IRn×n : L � X � U} ,

εpd = {X ∈ IRn×n : XT = X, λmin(X) � ε > 0} ,

and,

P = {X ∈ IRn×n : X =
m∑

i=1

αiGi for some αi ∈ IR, 1 � i � m} .

In the definition of P, 1 � m � n(n + 1)/2 (usually in the applications

m � n), and G1, ..., Gm are given n × n nonzero symmetric matrices whose

entries are either 0 or 1, and have the following property: for each st-entry,

1 � s, t � n, there exists one and only one k (1 � k � m) such that

(Gk)st = 1.
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Problem (1) can now be stated as follows:

min {‖X −A‖2F : X ∈ B ∩ εpd ∩ P} . (2)

We observe that the feasible region of problem (2) is the intersection of closed

and convex sets in the inner product space IRn×n. Furthermore, P is a closed

subspace included in the subspace of symmetric matrices, and {G1, ..., Gm}
form a basis of P.

In this work we use an inexpensive procedure to project directly on B∩P,

which is based on a characterization that was obtained in [8]. Similarly, in

[9] the authors characterize the projection onto the set εpd. The associated

implementation requires the computation of several eigenvalues and eigen-

vectors of a symmetric matrix Xk at every cycle k, and is given by

Pεpd(X
k) = Xk +

p∑
i=1

(ε− λi
k)Zi

kZi
kT

, (3)

where Xk is the matrix obtained at the k-th cycle by projecting onto the set

B ∩P, which in turn will be projected onto the set εpd. Likewise, λ1, . . . , λp

are the eigenvalues of Xk that are less than ε, and Z1
k, . . . , Zp

k are the

corresponding eigenvectors.

For a connection with problem (P1) in Section 2, set f(X) = 1
2
‖X−A‖2F ,

C1 = B ∩P, and C2 = εpd. We present a suitable version of the Generalized

Dykstra’s Algorithm that can be written as follows.

Set γ0
1 ≡ 0, γ0

2 ≡ 0, X0 = A. For k = 0, 1, . . .

Xk = argmin
1

2
‖X − A‖2 + γk

1 (X) + γk
2 (X).

a) If k + 1 is odd,

set i(k) = 1,

set Γk = V #(C1), and solve

(Dk)

⎧⎨
⎩

maxF(γk
2 + γ)

s.t. γ ∈ V #(C1)
←

⎧⎨
⎩

min 1
2
‖X − (Xk +∇γk

1 )‖2

s.t. X ∈ C1
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b) If k + 1 is even,

set i(k) = 2.

b1) If k+1
2

is odd,

set Γk = V #(C2), and solve

(Dk)

⎧⎨
⎩

maxF(γk
1 + γ)

s.t. γ ∈ V #(C2)

Xk+1 = PC2(X
k +∇γk

2 ).

γk+1
2 = 〈X −Xk+1, (Xk +∇γk

2 )−Xk+1〉

= −
∑

(ε− λi)+viv
t
i

=
∑
−(ε− λi)+(vt

i(X −Xk+1)vi).

Let I = {i : λi < ε}. For i ∈ I, vt
iX

k+1vi = ε.

b2) If k+1
2

is even,

(here Γk = {X → −
∑
i∈I

ti(v
t
iXvi − ε) : ti � 0})

X → −
∑
i∈I

ti(v
t
i(X −Xk+1)vi)

γk
2 ∈ Γk⎧⎨

⎩
maxF(γk

1 + γ)

s.t. γ ∈ Γk

←
⎧⎨
⎩

min 1
2
‖X − (Xk +∇γk

2 )‖2

s.t. vt
iXvi � ε, i ∈ I.

4 Numerical experiments

In this section we compare the performance of the new generalized alternat-

ing projection algorithm (GA for brevity), obtained in Section 3 for solving

problem (2), with the improved version (IA) of Escalante and Raydan [8],
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using the modified projection (3), that can be written as follows.

Given A ∈ IRn×n, set A0 = A, and I0
εpd = I0

B∩P = 0

For i = 0, 1, 2, ...

Ai = PB∩P(Ai)− I i
εpd

I i+1
εpd = Pεpd(Ai)− Ai (4)

Ai+1 = Pεpd(Ai)− I i
B∩P

I i+1
B∩P = PB∩P(Ai+1)−Ai+1 .

Here I i
εpd and I i

B∩P play the role of the increments introduced by Dykstra [7],

and PB∩P(A), is the unique solution to the problem

min
x∈B∩P

‖X −A‖F . (5)

The key fact here is that we do not need to compute eigenvalues and

eigenvectors at each iteration of the process, instead we compute them, based

on the Generalized Dykstra’s algorithm of Section 3, in a simple way and

without deteriorating the quality of the approximate solutions.

All experiments in this section were run on a HP APOLLO workstation in

double precision FORTRAN. The eigenvalues and eigenvectors, required in

the projection onto the set εpd, were computed by the subroutine DSYEVX

from the LAPACK library [1]. We set ε = 0.1, for all experiments. The

iterations in both algorithm were stopped when

‖I i−1
εpd − I i

εpd‖2F + ‖I i−1
B∩P − I i

B∩P‖2F � TOL ,

for different values of TOL. This stopping criterion is robust (see Birgin and

Raydan [2]).

In [9] we use the subroutine DSYEVX from the LAPACK library [1] to

compute the eigenvalues and eigenvectors. The subroutine DSYEVX provide
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flexibility in these estimates, allowing the compute of a subset of eigenvalues

and eigenvectors of a given matrix A.

Our purpose is to try with matrices that have a different number of eigen-

values smaller than ε (i.e., matrices with a number of eigenvalues smaller than

ε, between 1 and n/2 approximately). In [9] the authors observed that if the

number of eigenvalues is “large”, then computing all eigenvalues at every cy-

cle by means of subroutine DSYEV from LAPACK library is a better option.

The tables below show the dimension of the matrix problem (n), the

CPU time in seconds (TIME), the number of iterations (IT) required by

both implementations for different tolerances, and the number (constant) of

iterations in which we do not compute neither the eigenvalues nor the eigen-

vectors before calling the LAPACK library again to compute the eigenvalues

and eigenvectors (Y ES/NO) (e.g., p/q means that for p iterations we com-

pute the eigenvalues and eigenvectors, and then for the next q iterations we

do not compute them).

In the case of the GA algorithm, it is important to point out that IT/(Y ES+

NO) is the approximate number of times that we call the LAPACK library

per numerical test. Far from it, in the case of the IA algorithm, we call in

each iteration the subroutine DSYEVX from the LAPACK library. For this

reason we expect the GA algorithm to be faster than the IA version.

In each of our experiments we define the matrix L as the null matrix and

U as the matrix whose ij-entry is given by i + j. Lastly, we set the pattern

matrix to be a symmetric Toeplitz matrix (see [8, Exp. 2]). In this case,

problem (2) is feasible.

Experiment 1

In our first experiment we carried out many trials, and in all of them we

use as initial matrix a random matrix A, which we add at the entries of its

diagonal the quantities 0, 0.2, 0.3, 0.4, 0.5 and 0.6 (d(A)).

Table 1 shows clearly that GA is faster than IA. Moreover, if n, d(A) and

NO (in Y ES/NO) increase, the CPU time for GA is less than the CPU time
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IA GA

d(A) n e < ε IT TIME IT TIME Y ES/NO

0 50 25 294 171 415 158 1/1

571 179 1/2

733 205 1/3

0.2 50 11 290 120 379 95.6 1/1

445 88.6 1/2

481 83 1/3

521 81 1/4

0.3 50 7 167 54.87 229 46.13 1/1

301 47.6 1/2

375 52.3 1/3

0.4 50 6 111 29.6 169 27 1/1

235 28 1/2

0.5 100 13 84 138 113 119 1/1

148 127 1/2

0.6 100 2 179 184 205 121 1/1

235 106 1/2

269 102 1/3

Table 1: Results for Experiment 2 (A = RANDOM + d(A).I and TOL =

.5× 10−3)
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IA GA

TOL IT TIME ERROR IT TIME ERROR Y ES/NO

10−2 7 4.0× 10−2 3.11× 10−3 7 2.9× 10−2 3.21× 10−3 1/2

10−7 24 0.13 3.98× 10−8 47 0.1 2.5× 10−8 1/5

10−7 24 0.13 3.98× 10−8 42 8.0× 10−2 4.6× 10−8 1/10

Table 2: Results for Experiment 2 (n = 10)

for IA to reach the same accuracy. We report also the number of eigenvalues

less than ε during each process (e < ε).

Experiment 2

In the second experiment we considered the Experiment 1 which appears in

[9]. In this case the matrix A has n/2 eigenvalues smaller than ε (first cycle),

and few (one or two) during the iterations that follow.

Tables 2 and 3 show the numerical results obtained. They show also the

distance (ERROR) in the Frobenius norm between the output matrices and

the exact solution X.

In Table 3 we consider another tolerance parameter (TOLL). We will use

LAPACK library in all the cycles to compute the eigenvalues and eigenvec-

tors (applying the modified projection (3)) until we reach the new tolerance

TOLL, then we continue with the application of the approach dual. Here we

report also the number of eigenvalues less than ε during the whole process.
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